Skip to content

This repository is a informal chainer version of the code implemented in https://github.com/WangYueFt/dgcnn.

License

Notifications You must be signed in to change notification settings

Obarads/DGCNN_chainer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dynamic Graph CNN using chainer

Introduce

This repository is an implementation of DGCNN[1] in Chainer.

Installation

Please install Chainer (and cupy if you want to use GPU) beforehand.
Furthermore, version that I tested operation is described on comments.

# chainer version 5.3.0
pip install chainer
# cupy-cuda100 version 5.4.0
pip install cupy-cuda100

Also, some extension library is used in some of the code,

# Chainer Chemistry version 0.5.0
git clone https://github.com/pfnet-research/chainer-chemistry.git
pip install -e chainer-chemistry
# ChainerEX version 0.0.1
git clone https://github.com/corochann/chainerex.git
pip install -e chainerex

Train

You can simply execute train code with GPU.

python train.py -g 0

Result

2019/04/10(YYYY/MM/DD), this implementation is incomplete. Chainer=our implementation, TensorFlow=author implementation.

framework main/loss main/accuracy validation/main/loss validation/main/accuracy elapsed_time
Chainer 0.0147 0.9948 0.7025 0.8906 116486.35(s) ≒ 32.36(h)
TensorFlow ??? 0.9741 ???? 0.9111 ????

Reference

  1. Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon. Dynamic Graph CNN for Learning on Point Clouds. 2018.
  2. WangYueFt. dgcnn. (access:2019/03/31)
  3. corochann. chainer-pointnet. (access:2019/03/31)

About

This repository is a informal chainer version of the code implemented in https://github.com/WangYueFt/dgcnn.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages