Skip to content

Oran-Ac/LOT-CRS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LOT-CRS

This is the official PyTorch implementation for the paper:

Zhipeng Zhao, Kun Zhou, Xiaolei Wang, Wayne Xin Zhao, Fan Pan, Zhao Cao, Ji-Rong Wen. Alleviating the Long-Tail Problem in Conversational Recommender Systems. RecSys 2023.

Overview

Conversational recommender systems (CRS) aim to provide the recommendation service via natural language conversations. To develop an effective CRS, high-quality CRS datasets are very crucial. However, existing CRS datasets suffer from the long-tail issue, i.e., a large proportion of items are rarely (or even never) mentioned in the conversations, which are called long-tail items. As a result, the CRSs trained on these datasets tend to recommend frequent items, and the diversity of the recommended items would be largely reduced, making users easier to get bored.

To address this issue, this paper presents LOT-CRS, a novel framework that focuses on simulating and utilizing a balanced CRS dataset (i.e., covering all the items evenly) for improving LOng-Tail recommendation performance of CRSs. In our approach, we design two pre-training tasks to enhance the understanding of simulated conversation for long-tail items, and adopt retrieval-augmented fine-tuning with label smoothness strategy to further improve the recommendation of long-tail items. Extensive experiments on two public CRS datasets have demonstrated the effectiveness and extensibility of our approach, especially on long-tail recommendation. model

Environment Configuration

$\color{red}{Notes :}$ data and readme.md are still under construction.

Build Docker Image

$ docker build -f Dockerfile -t LOT-CRS .

Create Docker Container

$ docker run --name=LOT-CRS --gpus all -it -v <your_path_to_folder>:/LOT-CRS LOT-CRS:latest

Settings

$ accelerate config # set your accelerate config for training
$ wandb login # login to track training process

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published