Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issues in Running LIT #13

Open
salmanahmed1993 opened this issue Aug 20, 2020 · 10 comments
Open

Issues in Running LIT #13

salmanahmed1993 opened this issue Aug 20, 2020 · 10 comments

Comments

@salmanahmed1993
Copy link

Hi There,

I am trying to run LIT Quick-start: sentiment classifier
cd ~/lit
python -m lit_nlp.examples.quickstart_sst_demo --port=5432

The output is:

(lit-nlp) C:~\lit>python -m lit_nlp.examples.quickstart_sst_demo --port=5432
2020-08-20 14:37:27.651045: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
I0820 14:37:27.670744 33968 quickstart_sst_demo.py:47] Working directory: C:\Users\SB0079~1\AppData\Local\Temp\tmp2582r1b0
W0820 14:37:27.926524 33968 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2.
I0820 14:37:27.926524 33968 dataset_builder.py:184] Overwrite dataset info from restored data version.
I0820 14:37:27.933496 33968 dataset_builder.py:253] Reusing dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2)
I0820 14:37:27.934466 33968 dataset_builder.py:399] Constructing tf.data.Dataset for split train, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2
W0820 14:37:27.934466 33968 dataset_builder.py:439] Warning: Setting shuffle_files=True because split=TRAIN and shuffle_files=None. This behavior will be deprecated on 2019-08-06, at which point shuffle_files=False will be the default for all splits.
W0820 14:37:35.189518 33968 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2.
I0820 14:37:35.190503 33968 dataset_builder.py:184] Overwrite dataset info from restored data version.
I0820 14:37:35.192508 33968 dataset_builder.py:253] Reusing dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2)
I0820 14:37:35.192508 33968 dataset_builder.py:399] Constructing tf.data.Dataset for split validation, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2
I0820 14:37:35.302182 33968 tokenization_utils.py:306] Model name 'google/bert_uncased_L-2_H-128_A-2' not found in model shortcut name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese, bert-base-german-cased, bert-large-uncased-whole-word-masking, bert-large-cased-whole-word-masking, bert-large-uncased-whole-word-masking-finetuned-squad, bert-large-cased-whole-word-masking-finetuned-squad, bert-base-cased-finetuned-mrpc, bert-base-german-dbmdz-cased, bert-base-german-dbmdz-uncased). Assuming 'google/bert_uncased_L-2_H-128_A-2' is a path or url to a directory containing tokenizer files.
I0820 14:37:35.302182 33968 tokenization_utils.py:317] Didn't find file google/bert_uncased_L-2_H-128_A-2. We won't load it.
I0820 14:37:35.303180 33968 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\added_tokens.json. We won't load it.
I0820 14:37:35.303180 33968 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\special_tokens_map.json. We won't load it.
I0820 14:37:35.303180 33968 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\tokenizer_config.json. We won't load it.
Traceback (most recent call last):
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 60, in
app.run(main)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 299, in run
_run_main(main, args)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 250, in _run_main
sys.exit(main(argv))
File "C:~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 48, in main
run_finetuning(model_path)
File "C:~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 40, in run_finetuning
model = glue_models.SST2Model(FLAGS.encoder_name, for_training=True)
File "C:~\lit\lit_nlp\examples\models\glue_models.py", line 319, in init
**kw)
File "C:~\lit\lit_nlp\examples\models\glue_models.py", line 59, in init
model_name_or_path)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_auto.py", line 109, in from_pretrained
return BertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_utils.py", line 282, in from_pretrained
return cls._from_pretrained(*inputs, **kwargs)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_utils.py", line 346, in _from_pretrained
list(cls.vocab_files_names.values())))
OSError: Model name 'google/bert_uncased_L-2_H-128_A-2' was not found in tokenizers model name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese, bert-base-german-cased, bert-large-uncased-whole-word-masking, bert-large-cased-whole-word-masking, bert-large-uncased-whole-word-masking-finetuned-squad, bert-large-cased-whole-word-masking-finetuned-squad, bert-base-cased-finetuned-mrpc, bert-base-german-dbmdz-cased, bert-base-german-dbmdz-uncased). We assumed 'google/bert_uncased_L-2_H-128_A-2' was a path or url to a directory containing vocabulary files named ['vocab.txt'] but couldn't find such vocabulary files at this path or url.

For Running Quick start: language modeling

cd ~/lit
python -m lit_nlp.examples.pretrained_lm_demo --models=bert-base-uncased
--port=5432

The error output is
(lit-nlp) C:~\lit>python -m lit_nlp.examples.pretrained_lm_demo --models=bert-base-uncased --port=5432
2020-08-20 14:32:20.119230: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
I0820 14:32:20.634253 32000 tokenization_utils.py:374] loading file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt from cache at C:\Users\SB00790107.cache\torch\transformers\26bc1ad6c0ac742e9b52263248f6d0f00068293b33709fae12320c0e35ccfbbb.542ce4285a40d23a559526243235df47c5f75c197f04f37d1a0c124c32c9a084
I0820 14:32:21.133054 32000 configuration_utils.py:151] loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json from cache at C:\Users\SB00790107.cache\torch\transformers\4dad0251492946e18ac39290fcfe91b89d370fee250efe9521476438fe8ca185.7156163d5fdc189c3016baca0775ffce230789d7fa2a42ef516483e4ca884517
I0820 14:32:21.143045 32000 configuration_utils.py:168] Model config {
"architectures": [
"BertForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"finetuning_task": null,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"num_labels": 2,
"output_attentions": true,
"output_hidden_states": true,
"output_past": true,
"pad_token_id": 0,
"pruned_heads": {},
"torchscript": false,
"type_vocab_size": 2,
"use_bfloat16": false,
"vocab_size": 30522
}

I0820 14:32:21.576282 32000 modeling_tf_utils.py:258] loading weights file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-tf_model.h5 from cache at C:\Users\SB00790107.cache\torch\transformers\d667df51ec24c20190f01fb4c20a21debc4c4fc12f7e2f5441ac0a99690e3ee9.4733ec82e81d40e9cf5fd04556267d8958fb150e9339390fc64206b7e5a79c83.h5
W0820 14:32:24.903656 32000 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2.
I0820 14:32:24.904676 32000 dataset_builder.py:187] Load pre-computed datasetinfo (eg: splits) from bucket.
I0820 14:32:25.158797 32000 dataset_info.py:410] Loading info from GCS for glue/sst2/0.0.2
I0820 14:32:26.526896 32000 dataset_builder.py:273] Generating dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2)
�[1mDownloading and preparing dataset glue (7.09 MiB) to C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2...�[0m
Dl Completed...: 0 url [00:00, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s]I0820 14:32:26.530886 32000 download_manager.py:241] Downloading https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8 into C:\Users\SB00790107\tensorflow_datasets\downloads\fire.goog.com_v0_b_mtl-sent-repr.apps.cowOhVrpNUsvqdZqI70Nq3ISu63l9SOhTqYqoz6uEW3-Y.zipalt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8.tmp.6f44416196e74a44a10bca183839e172...
Dl Completed...: 0%| | 0/1 [00:00<?, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s]C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\urllib3\connectionpool.py:988: InsecureRequestWarning: Unverified HTTPS request is being made to host 'firebasestorage.googleapis.com'. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings
InsecureRequestWarning,
Dl Completed...: 0%| | 0/1 [00:00<?, ? url/s]
Dl Size...: 0%| | 0/7 [00:00<?, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s]
Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s]
Dl Size...: 14%|███████████████████▎ | 1/7 [00:01<00:06, 1.10s/ MiB]

Extraction completed...: 0 file [00:01, ? file/s]
Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s]
Dl Size...: 29%|██████████████████████████████████████▌ | 2/7 [00:01<00:04, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s]
Dl Size...: 43%|█████████████████████████████████████████████████████████▊ | 3/7 [00:01<00:03, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s]
Dl Size...: 57%|█████████████████████████████████████████████████████████████████████████████▏ | 4/7 [00:01<00:02, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s]
Dl Size...: 71%|████████████████████████████████████████████████████████████████████████████████████████████████▍ | 5/7 [00:01<00:01, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s]
Dl Size...: 86%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 6/7 [00:01<00:00, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s]
Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 1.19 MiB/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.40s/ url]
Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 1.19 MiB/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.40s/ url]
Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 1.19 MiB/s]

Extraction completed...: 0%| | 0/1 [00:01<?, ? file/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.40s/ url]
Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 1.19 MiB/s]

Extraction completed...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.74s/ file]
Extraction completed...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.74s/ file]

Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 4.02 MiB/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.74s/ url]
I0820 14:32:28.270815 32000 dataset_builder.py:812] Generating split train
I0820 14:32:28.270815 32000 file_format_adapter.py:233] Writing TFRecords
Shuffling...: 0%| | 0/1 [00:00<?, ? shard/s]WARNING:tensorflow:From C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\tensorflow_datasets\core\file_format_adapter.py:209: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and:
tf.data.TFRecordDataset(path)
W0820 14:32:39.338444 32000 deprecation.py:323] From C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\tensorflow_datasets\core\file_format_adapter.py:209: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and:
tf.data.TFRecordDataset(path)

Reading...: 0 examples [00:00, ? examples/s]
Reading...: 64184 examples [00:00, 637222.07 examples/s]

Writing...: 0%| | 0/67349 [00:00<?, ? examples/s]
Writing...: 15%|█████████████████▊ | 9980/67349 [00:00<00:00, 99082.42 examples/s]
Writing...: 30%|███████████████████████████████████▌ | 20094/67349 [00:00<00:00, 99477.68 examples/s]
Writing...: 45%|█████████████████████████████████████████████████████▎ | 30195/67349 [00:00<00:00, 99709.61 examples/s]
Writing...: 60%|██████████████████████████████████████████████████████████████████████▊ | 40401/67349 [00:00<00:00, 100188.93 examples/s]
Writing...: 75%|████████████████████████████████████████████████████████████████████████████████████████▋ | 50623/67349 [00:00<00:00, 100574.12 examples/s]
Writing...: 90%|██████████████████████████████████████████████████████████████████████████████████████████████████████████▍ | 60780/67349 [00:00<00:00, 100664.57 examples/s]
I0820 14:32:40.169348 32000 dataset_builder.py:812] Generating split validation
I0820 14:32:40.170345 32000 file_format_adapter.py:233] Writing TFRecords
Shuffling...: 0%| | 0/1 [00:00<?, ? shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/872 [00:00<?, ? examples/s]
I0820 14:32:40.370083 32000 dataset_builder.py:812] Generating split test
I0820 14:32:40.373092 32000 file_format_adapter.py:233] Writing TFRecords
Shuffling...: 0%| | 0/1 [00:00<?, ? shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/1821 [00:00<?, ? examples/s]
I0820 14:32:40.717523 32000 dataset_builder.py:301] Skipping computing stats for mode ComputeStatsMode.AUTO.
�[1mDataset glue downloaded and prepared to C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2. Subsequent calls will reuse this data.�[0m
I0820 14:32:40.735554 32000 dataset_builder.py:399] Constructing tf.data.Dataset for split validation, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2
I0820 14:32:41.163142 32000 dataset_builder.py:675] No config specified, defaulting to first: imdb_reviews/plain_text
I0820 14:32:41.164139 32000 dataset_builder.py:187] Load pre-computed datasetinfo (eg: splits) from bucket.
I0820 14:32:41.407350 32000 dataset_info.py:410] Loading info from GCS for imdb_reviews/plain_text/0.1.0
I0820 14:32:42.439117 32000 dataset_builder.py:273] Generating dataset imdb_reviews (C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0)
�[1mDownloading and preparing dataset imdb_reviews (80.23 MiB) to C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0...�[0m
Dl Completed...: 0 url [00:00, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]I0820 14:32:42.443107 32000 download_manager.py:241] Downloading http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz into C:\Users\SB00790107\tensorflow_datasets\downloads\ai.stanfor.edu_amaas_sentime_aclImdb_v1PaujRp-TxjBWz59jHXsMDm5WiexbxzaFQkEnXc3Tvo8.tar.gz.tmp.69c9ef3d01b84444a160e5ba3160fb45...
Dl Completed...: 0%| | 0/1 [00:00<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:00<?, ? url/s]
Dl Size...: 0%| | 0/80 [00:00<?, ? MiB/s]
Dl Completed...: 0%| | 0/1 [00:02<?, ? url/s]
Dl Size...: 1%|█▋ | 1/80 [00:02<03:40, 2.80s/ MiB]
Dl Completed...: 0%| | 0/1 [00:03<?, ? url/s]
Dl Size...: 2%|███▎ | 2/80 [00:03<02:47, 2.15s/ MiB]
Dl Completed...: 0%| | 0/1 [00:03<?, ? url/s]
Dl Size...: 4%|█████ | 3/80 [00:03<02:06, 1.64s/ MiB]
Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s]
Dl Size...: 5%|██████▋ | 4/80 [00:04<01:31, 1.21s/ MiB]
Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s]
Dl Size...: 6%|████████▍ | 5/80 [00:04<01:09, 1.08 MiB/s]
Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s]
Dl Size...: 8%|██████████ | 6/80 [00:04<00:51, 1.43 MiB/s]
Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s]
Dl Size...: 9%|███████████▋ | 7/80 [00:04<00:39, 1.85 MiB/s]
Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s]
Dl Size...: 10%|█████████████▍ | 8/80 [00:04<00:30, 2.34 MiB/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Size...: 12%|████████████████▋ | 10/80 [00:05<00:24, 2.89 MiB/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Size...: 14%|██████████████████▎ | 11/80 [00:05<00:18, 3.74 MiB/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Size...: 16%|█████████████████████▌ | 13/80 [00:05<00:15, 4.30 MiB/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Size...: 19%|████████████████████████▉ | 15/80 [00:05<00:12, 5.33 MiB/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Size...: 22%|█████████████████████████████▉ | 18/80 [00:05<00:09, 6.42 MiB/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Size...: 25%|█████████████████████████████████▎ | 20/80 [00:05<00:07, 7.91 MiB/s]
Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Size...: 29%|██████████████████████████████████████▏ | 23/80 [00:06<00:06, 9.10 MiB/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Size...: 32%|███████████████████████████████████████████▏ | 26/80 [00:06<00:05, 10.61 MiB/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Size...: 36%|████████████████████████████████████████████████▏ | 29/80 [00:06<00:04, 12.09 MiB/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Size...: 40%|█████████████████████████████████████████████████████▏ | 32/80 [00:06<00:03, 13.50 MiB/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Size...: 44%|██████████████████████████████████████████████████████████▏ | 35/80 [00:06<00:03, 14.62 MiB/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Size...: 46%|█████████████████████████████████████████████████████████████▌ | 37/80 [00:06<00:02, 15.45 MiB/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Size...: 50%|██████████████████████████████████████████████████████████████████▌ | 40/80 [00:07<00:02, 14.49 MiB/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Size...: 54%|███████████████████████████████████████████████████████████████████████▍ | 43/80 [00:07<00:02, 15.40 MiB/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Size...: 57%|████████████████████████████████████████████████████████████████████████████▍ | 46/80 [00:07<00:02, 16.19 MiB/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Size...: 61%|█████████████████████████████████████████████████████████████████████████████████▍ | 49/80 [00:07<00:01, 16.75 MiB/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Size...: 64%|████████████████████████████████████████████████████████████████████████████████████▊ | 51/80 [00:07<00:01, 17.14 MiB/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Size...: 68%|█████████████████████████████████████████████████████████████████████████████████████████▊ | 54/80 [00:07<00:01, 15.51 MiB/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Size...: 71%|██████████████████████████████████████████████████████████████████████████████████████████████▊ | 57/80 [00:08<00:01, 16.21 MiB/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Size...: 75%|███████████████████████████████████████████████████████████████████████████████████████████████████▊ | 60/80 [00:08<00:01, 16.74 MiB/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Size...: 79%|████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 63/80 [00:08<00:00, 17.16 MiB/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Size...: 82%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 66/80 [00:08<00:00, 17.75 MiB/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Size...: 86%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 69/80 [00:08<00:00, 17.19 MiB/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Size...: 89%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 71/80 [00:08<00:00, 17.41 MiB/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s]
Dl Size...: 92%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 74/80 [00:09<00:00, 16.26 MiB/s]
Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s]
Dl Size...: 96%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 77/80 [00:09<00:00, 16.68 MiB/s]
Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s]
Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s]
Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:09<00:00, 9.58s/ url]
Dl Size...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80/80 [00:09<00:00, 17.05 MiB/s]
Dl Size...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80/80 [00:09<00:00, 8.34 MiB/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:09<00:00, 9.60s/ url]
I0820 14:32:52.047359 32000 dataset_builder.py:812] Generating split train
I0820 14:32:52.050351 32000 file_format_adapter.py:233] Writing TFRecords
Shuffling...: 0%| | 0/10 [00:00<?, ? shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 20%|██████████████████████████ | 2/10 [00:00<00:00, 14.12 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 40%|████████████████████████████████████████████████████ | 4/10 [00:00<00:00, 14.21 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 60%|██████████████████████████████████████████████████████████████████████████████ | 6/10 [00:00<00:00, 14.12 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 80%|████████████████████████████████████████████████████████████████████████████████████████████████████████ | 8/10 [00:00<00:00, 14.14 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
I0820 14:33:03.785629 32000 dataset_builder.py:812] Generating split test
I0820 14:33:03.788612 32000 file_format_adapter.py:233] Writing TFRecords
Shuffling...: 0%| | 0/10 [00:00<?, ? shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 20%|██████████████████████████ | 2/10 [00:00<00:00, 14.22 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 40%|████████████████████████████████████████████████████ | 4/10 [00:00<00:00, 14.37 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 60%|██████████████████████████████████████████████████████████████████████████████ | 6/10 [00:00<00:00, 14.34 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 80%|████████████████████████████████████████████████████████████████████████████████████████████████████████ | 8/10 [00:00<00:00, 14.05 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
I0820 14:33:15.452958 32000 dataset_builder.py:812] Generating split unsupervised
I0820 14:33:15.457943 32000 file_format_adapter.py:233] Writing TFRecords
Shuffling...: 0%| | 0/20 [00:00<?, ? shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 10%|█████████████ | 2/20 [00:00<00:01, 14.01 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 20%|██████████████████████████ | 4/20 [00:00<00:01, 13.65 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 30%|███████████████████████████████████████ | 6/20 [00:00<00:01, 13.69 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 40%|████████████████████████████████████████████████████ | 8/20 [00:00<00:00, 13.57 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 50%|████████████████████████████████████████████████████████████████▌ | 10/20 [00:00<00:00, 13.85 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 60%|█████████████████████████████████████████████████████████████████████████████▍ | 12/20 [00:00<00:00, 13.29 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 70%|██████████████████████████████████████████████████████████████████████████████████████████▎ | 14/20 [00:01<00:00, 13.38 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 80%|███████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 16/20 [00:01<00:00, 13.22 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
Shuffling...: 90%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 18/20 [00:01<00:00, 13.34 shard/s]
Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]
I0820 14:33:32.041668 32000 dataset_builder.py:301] Skipping computing stats for mode ComputeStatsMode.AUTO.
�[1mDataset imdb_reviews downloaded and prepared to C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0. Subsequent calls will reuse this data.�[0m
I0820 14:33:32.053635 32000 dataset_builder.py:399] Constructing tf.data.Dataset for split test, from C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0
I0820 14:33:34.528547 32000 pretrained_lm_demo.py:92] Dataset: 'sst_dev' with 872 examples
I0820 14:33:34.536590 32000 pretrained_lm_demo.py:92] Dataset: 'imdb_train' with 25000 examples
I0820 14:33:34.536590 32000 pretrained_lm_demo.py:92] Dataset: 'blank' with 0 examples
I0820 14:33:34.536590 32000 dev_server.py:79]
( (
)\ ) )\ ) * )
(()/((()/(` ) /(
/())/())( )())
(
)) ()) ((())
| | |
|| |
| |
_ | | | |
||| ||

I0820 14:33:34.536590 32000 dev_server.py:80] Starting LIT server...
Traceback (most recent call last):
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:~\lit\lit_nlp\examples\pretrained_lm_demo.py", line 102, in
app.run(main)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 299, in run
_run_main(main, args)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 250, in _run_main
sys.exit(main(argv))
File "C:~\lit\lit_nlp\examples\pretrained_lm_demo.py", line 98, in main
lit_demo.serve()
File "C:~\lit\lit_nlp\dev_server.py", line 81, in serve
app = lit_app.LitApp(*self._app_args, **self._app_kw)
File "C:~\lit\lit_nlp\app.py", line 293, in init
os.mkdir(data_dir)
FileNotFoundError: [WinError 3] The system cannot find the path specified: '/tmp/lit_data'

@marciowelter
Copy link

marciowelter commented Aug 20, 2020 via email

@iftenney
Copy link
Collaborator

Sorry! That path is used to save the predictions cache between runs, but you can disable it with the flag --data-dir="" (see https://github.com/PAIR-code/lit/blob/main/lit_nlp/server_flags.py#L43)

FYI: we haven't tested LIT on Windows at all, so can't guarantee that other issues won't pop up here.

@marciowelter
Copy link

marciowelter commented Aug 21, 2020 via email

@salmanahmed1993
Copy link
Author

Hi There, I have resolved the issue but there is no index file is present...

Kindly resolve the issue

(lit-nlp) C:~\lit>python -m lit_nlp.examples.quickstart_sst_demo --port=5432
2020-08-24 10:26:15.605109: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
I0824 10:26:15.623712 44212 quickstart_sst_demo.py:47] Working directory: C:\Users\SB0079~1\AppData\Local\Temp\tmp27r8f4_x
W0824 10:26:15.864023 44212 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2.
I0824 10:26:15.864023 44212 dataset_builder.py:184] Overwrite dataset info from restored data version.
I0824 10:26:15.867015 44212 dataset_builder.py:253] Reusing dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2)
I0824 10:26:15.867015 44212 dataset_builder.py:399] Constructing tf.data.Dataset for split train, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2
W0824 10:26:15.867015 44212 dataset_builder.py:439] Warning: Setting shuffle_files=True because split=TRAIN and shuffle_files=None. This behavior will be deprecated on 2019-08-06, at which point shuffle_files=False will be the default for all splits.
W0824 10:26:23.170175 44212 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2.
I0824 10:26:23.171172 44212 dataset_builder.py:184] Overwrite dataset info from restored data version.
I0824 10:26:23.174169 44212 dataset_builder.py:253] Reusing dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2)
I0824 10:26:23.174169 44212 dataset_builder.py:399] Constructing tf.data.Dataset for split validation, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2
I0824 10:26:23.292843 44212 tokenization_utils.py:306] Model name 'google/bert_uncased_L-2_H-128_A-2' not found in model shortcut name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese, bert-base-german-cased, bert-large-uncased-whole-word-masking, bert-large-cased-whole-word-masking, bert-large-uncased-whole-word-masking-finetuned-squad, bert-large-cased-whole-word-masking-finetuned-squad, bert-base-cased-finetuned-mrpc, bert-base-german-dbmdz-cased, bert-base-german-dbmdz-uncased). Assuming 'google/bert_uncased_L-2_H-128_A-2' is a path or url to a directory containing tokenizer files.
I0824 10:26:23.293861 44212 tokenization_utils.py:317] Didn't find file google/bert_uncased_L-2_H-128_A-2. We won't load it.
I0824 10:26:23.294867 44212 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\added_tokens.json. We won't load it.
I0824 10:26:23.294867 44212 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\special_tokens_map.json. We won't load it.
I0824 10:26:23.294867 44212 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\tokenizer_config.json. We won't load it.
Traceback (most recent call last):
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 60, in
app.run(main)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 299, in run
_run_main(main, args)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 250, in _run_main
sys.exit(main(argv))
File "C:~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 48, in main
run_finetuning(model_path)
File "C:~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 40, in run_finetuning
model = glue_models.SST2Model(FLAGS.encoder_name, for_training=True)
File "C:~\lit\lit_nlp\examples\models\glue_models.py", line 319, in init
**kw)
File "C:~\lit\lit_nlp\examples\models\glue_models.py", line 59, in init
model_name_or_path)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_auto.py", line 109, in from_pretrained
return BertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_utils.py", line 282, in from_pretrained
return cls._from_pretrained(*inputs, **kwargs)
File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_utils.py", line 346, in _from_pretrained
list(cls.vocab_files_names.values())))
OSError: Model name 'google/bert_uncased_L-2_H-128_A-2' was not found in tokenizers model name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese, bert-base-german-cased, bert-large-uncased-whole-word-masking, bert-large-cased-whole-word-masking, bert-large-uncased-whole-word-masking-finetuned-squad, bert-large-cased-whole-word-masking-finetuned-squad, bert-base-cased-finetuned-mrpc, bert-base-german-dbmdz-cased, bert-base-german-dbmdz-uncased). We assumed 'google/bert_uncased_L-2_H-128_A-2' was a path or url to a directory containing vocabulary files named ['vocab.txt'] but couldn't find such vocabulary files at this path or url.

(lit-nlp) C:~\lit>python -m lit_nlp.examples.pretrained_lm_demo --models=bert-base-uncased --port=5432
2020-08-24 10:27:30.452676: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
I0824 10:27:30.974245 20960 tokenization_utils.py:374] loading file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt from cache at C:\Users\SB00790107.cache\torch\transformers\26bc1ad6c0ac742e9b52263248f6d0f00068293b33709fae12320c0e35ccfbbb.542ce4285a40d23a559526243235df47c5f75c197f04f37d1a0c124c32c9a084
I0824 10:27:31.431842 20960 configuration_utils.py:151] loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json from cache at C:\Users\SB00790107.cache\torch\transformers\4dad0251492946e18ac39290fcfe91b89d370fee250efe9521476438fe8ca185.7156163d5fdc189c3016baca0775ffce230789d7fa2a42ef516483e4ca884517
I0824 10:27:31.432831 20960 configuration_utils.py:168] Model config {
"architectures": [
"BertForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"finetuning_task": null,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"num_labels": 2,
"output_attentions": true,
"output_hidden_states": true,
"output_past": true,
"pad_token_id": 0,
"pruned_heads": {},
"torchscript": false,
"type_vocab_size": 2,
"use_bfloat16": false,
"vocab_size": 30522
}

I0824 10:27:31.845113 20960 modeling_tf_utils.py:258] loading weights file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-tf_model.h5 from cache at C:\Users\SB00790107.cache\torch\transformers\d667df51ec24c20190f01fb4c20a21debc4c4fc12f7e2f5441ac0a99690e3ee9.4733ec82e81d40e9cf5fd04556267d8958fb150e9339390fc64206b7e5a79c83.h5
W0824 10:27:33.815547 20960 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2.
I0824 10:27:33.816513 20960 dataset_builder.py:184] Overwrite dataset info from restored data version.
I0824 10:27:33.819529 20960 dataset_builder.py:253] Reusing dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2)
I0824 10:27:33.819529 20960 dataset_builder.py:399] Constructing tf.data.Dataset for split validation, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2
I0824 10:27:34.212498 20960 dataset_builder.py:675] No config specified, defaulting to first: imdb_reviews/plain_text
I0824 10:27:34.214521 20960 dataset_builder.py:184] Overwrite dataset info from restored data version.
I0824 10:27:34.218503 20960 dataset_builder.py:253] Reusing dataset imdb_reviews (C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0)
I0824 10:27:34.218503 20960 dataset_builder.py:399] Constructing tf.data.Dataset for split test, from C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0
I0824 10:27:36.730678 20960 pretrained_lm_demo.py:92] Dataset: 'sst_dev' with 872 examples
I0824 10:27:36.731676 20960 pretrained_lm_demo.py:92] Dataset: 'imdb_train' with 25000 examples
I0824 10:27:36.732645 20960 pretrained_lm_demo.py:92] Dataset: 'blank' with 0 examples
I0824 10:27:36.732645 20960 dev_server.py:79]
( (
)\ ) )\ ) * )
(()/((()/(` ) /(
/())/())( )())
(
)) ()) ((())
| | |
|| |
| |
_ | | | |
||| ||

I0824 10:27:36.732645 20960 dev_server.py:80] Starting LIT server...
I0824 10:27:36.733643 20960 caching.py:134] CachingModelWrapper 'bert-base-uncased': cache file /tmp/lit_data\bert-base-uncased.cache.pkl does not exist, not loading.
I0824 10:27:36.733643 20960 wsgi_serving.py:39]

Starting Server on port 5432
You can navigate to 127.0.0.1:5432

I0824 10:27:36.735637 20960 _internal.py:122] * Running on http://127.0.0.1:5432/ (Press CTRL+C to quit)
W0824 10:27:50.120238 20960 wsgi_app.py:57] IOError [Errno 2] No such file or directory: './lit_nlp/client/build/static/index.html' on path ./lit_nlp/client/build/static/index.html
I0824 10:27:50.120238 20960 wsgi_app.py:147] path ./lit_nlp/client/build/static/index.html not found, sending 404
I0824 10:27:50.121235 20960 _internal.py:122] 127.0.0.1 - - [24/Aug/2020 10:27:50] "�[33mGET / HTTP/1.1�[0m" 404 -
forrtl: error (200): program aborting due to control-C event
Image PC Routine Line Source
libifcoremd.dll 00007FFAE0F63B58 Unknown Unknown Unknown
KERNELBASE.dll 00007FFB399C5F63 Unknown Unknown Unknown
KERNEL32.DLL 00007FFB3B877BD4 Unknown Unknown Unknown
ntdll.dll 00007FFB3BC8CE51 Unknown Unknown Unknown

@jameswex
Copy link
Collaborator

Have you run the steps to build the front-end? Running the "yarn" and "yarn build" commands in the client directory? And did they succeed?

@salmanahmed1993
Copy link
Author

My Yarn is running but didnt show any interface

(lit-nlp) C:~\lit>yarn && yarn build
yarn install v1.22.4
info No lockfile found.
[1/4] Resolving packages...
[2/4] Fetching packages...
[3/4] Linking dependencies...
[4/4] Building fresh packages...
success Saved lockfile.
Done in 0.07s.
yarn run v1.22.4
error Couldn't find a package.json file in "C:\~\lit"
info Visit https://yarnpkg.com/en/docs/cli/run for documentation about this command.

@iftenney
Copy link
Collaborator

It looks like you're running from the root directory; can you try running yarn from lit_nlp/client?

@pedrohesch
Copy link

Hello,
I have run python -m lit_nlp.examples.pretrained_lm_demo --models=bert-base-uncased --port=5432
and after navigated to UI, I realized an error message. And for that, I was able to check the following details at the console

I1207 23:10:53.014894 11092 caching.py:226] CachingModelWrapper 'bert-base-uncased': 1000 misses out of 1000 inputs
I1207 23:10:53.014894 11092 caching.py:231] Prepared 1000 inputs for model
E1207 23:10:53.021873 11092 wsgi_app.py:208] Uncaught error: _batch_encode_plus() got an unexpected keyword argument 'is_pretokenized'

Traceback (most recent call last):
File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\lib\wsgi_app.py", line 191, in call
return self._ServeCustomHandler(request, clean_path)(environ,
File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\lib\wsgi_app.py", line 176, in _ServeCustomHandler
return self._handlers[clean_path](self, request)
File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\app.py", line 75, in _handler
outputs = fn(data, **kw)
File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\app.py", line 239, in _get_interpretations
model_outputs = self._predict(data['inputs'], model, dataset_name)
File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\app.py", line 138, in _predict
inputs, dataset_name=dataset_name)
File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\lib\caching.py", line 203, in predict_with_metadata
results = self._predict_with_metadata(*args, **kw)
File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\lib\caching.py", line 232, in _predict_with_metadata
model_preds = list(self._model.predict_with_metadata(model_inputs))
File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\api\model.py", line 190, in
results = (scrub_numpy_refs(res) for res in results)
File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\api\model.py", line 202, in _batched_predict
yield from self.predict_minibatch(minibatch, **kw)
File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\examples\models\pretrained_lms.py", line 102, in predict_minibatch
pad_to_max_length=True)
File "D:\lit\lit-nlp\lib\site-packages\transformers\tokenization_utils_base.py", line 2519, in batch_encode_plus
**kwargs,
TypeError: _batch_encode_plus() got an unexpected keyword argument 'is_pretokenized'

@iftenney
Copy link
Collaborator

iftenney commented Dec 8, 2020

What version of transformers do you have installed? The current LIT demos use transformers==2.11.0 (though we're in the process of updating them), which may have a different call signature to the tokenizers.

@pedrohesch
Copy link

What version of transformers do you have installed? The current LIT demos use transformers==2.11.0 (though we're in the process of updating them), which may have a different call signature to the tokenizers.

yes, that is it. I just updated the transformers to 2.11.0 and it is done. Thanks.

aryan1107 added a commit that referenced this issue Aug 2, 2022
Updates Scalars to use .module-* class pattern.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants