# Download the code
git clone https://github.com/PGSmall/DAVIS-Evaluation.git && cd davis2017-evaluation
# Install it - Python 3.6 or higher required
python setup.py install
If you don't want to specify the DAVIS path every time, you can modify the default value in the variable default_davis_path
in evaluation_method.py
(the following examples assume that you have set it).
Otherwise, you can specify the path in every call using using the flag --davis_path /path/to/DAVIS
when calling evaluation_method.py
.
I modified the source code DAVIS2017-Evaluation, and the revised code can evaluate the davis 2016, 2017 and 2019 datasets.
In order to evaluate your semi-supervised method in DAVIS 2017, execute the following command substituting results/semi-supervised/osvos
by the folder path that contains your results:
python evaluation_method.py --task semi-supervised --results_path results/semi-supervised/osvos --year 2017
The semi-supervised results have been generated using OSVOS.
In order to evaluate your unsupervised method in DAVIS 2017, execute the following command substituting results/unsupervised/rvos
by the folder path that contains your results:
python evaluation_method.py --task unsupervised --results_path results/unsupervised/rvos --2017
The unsupervised results example have been generated using RVOS.
In order to evaluate your unsupervised method in DAVIS 2016, execute the following command substituting results/unsupervised/rvos
by the folder path that contains your results:
python evaluation_method.py --task unsupervised --results_path results/unsupervised/rvos --2016
The unsupervised results example have been generated using RVOS.
Thanks a lot these issues.