This is the official Pytorch implementation of Selective Partial Domain Adaptation.
- Python3
- PyTorch ==1.7.1 (with suitable CUDA and CuDNN version)
- torchvision == 0.7.2
- Numpy
- argparse
Office-31
python train.py --dst office31 --source amazon_31_list --target dslr_10_list --lr 0.1 --loop-way zip --epochs 200
Office-Home
python train.py --dst officehome --source Art_list --target Clipart_25_list --lr 0.1 --loop-way zip --epochs 200
VisDA2017
python train.py --dst visda --source train_list --target val_sub_list --lr 0.1 --loop-way zip --epochs 200
If you use this code for your research, please consider citing:
@inproceedings{guo2022selective,
title={Selective Partial Domain Adaptation},
author={Guo, Pengxin and Zhu, Jinjing and Zhang, Yu},
booktitle={33rd British Machine Vision Conference 2022, {BMVC} 2022, London, UK, November 21-24, 2022},
publisher={{BMVA} Press},
year={2022},
url={https://bmvc2022.mpi-inf.mpg.de/0420.pdf}
}
Our code refer the code at: https://github.com/thuml/MDD.
We thank the authors for open sourcing their code.
If you have any problem about our code, feel free to contact 12032913@mail.sustech.edu.cn.