-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathARDS_prone_change.py
291 lines (242 loc) · 12.3 KB
/
ARDS_prone_change.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import numpy as np
from load_data import LoadData
import pandas as pd
from collections import OrderedDict, defaultdict
from sql import prone_change_queries
from parameters_estimate import ParametersEstimate
import pickle
class Model:
"""
This class is modeling the ARDS Prone change model,
using SCCS (Self Control Case Series), under Non-Homogeneous Poisson process assumption.
"""
def __init__(self, model_type="positive"):
self._HOUR = 60
self._TIME_FRAME = 12 * self._HOUR # the time frame in the model from hours to minutes
self._DEFAULT_TOLERANCE = 48 * self._HOUR # the default time frame tolerance for naive model (mostly after)
self._BEFORE_TOLERANCE = 24 * self._HOUR # the default time frame tolerance for before the treatment
# The ratio of the ARDS, in format of "name" -> [High, Low)
self._adverse_ratio = {
'Normal': (np.float('inf'), 0),
'Mild': (300, 200),
'Moderate': (200, 100),
'Severe': (100, 0)
} # type: dict(str, tuple(int, int))
self._model_type = model_type
self.patients_under_treat = defaultdict(np.ndarray) # type: defaultdict(int,np.ndarray[int])
self.patients_adversary_events = defaultdict(np.ndarray) # type: defaultdict(int, np.ndarray[int])
self.patients_naive_vector = defaultdict(np.ndarray) # type: defaultdict(int, np.ndarray[float])
self.load_data = LoadData()
self.patients_under_treat_matrix = None # type: np.ndarray
self.patients_adversary_events_matrix = None # type: np.ndarray
self.patients_data = defaultdict(pd.DataFrame) # type: defaultdict(int, pd.DataFrame)
self.outliers = []
@property
def default_tolerance(self):
return self._DEFAULT_TOLERANCE
@default_tolerance.setter
def default_tolerance(self, value):
self._DEFAULT_TOLERANCE = value * self._HOUR
@property
def before_tolerance(self):
return self._BEFORE_TOLERANCE
@before_tolerance.setter
def before_tolerance(self, value):
self._BEFORE_TOLERANCE = value * self._HOUR
@property
def time_frame(self):
return self._TIME_FRAME/self._HOUR
@time_frame.setter
def time_frame(self, value):
self._TIME_FRAME = value * self._HOUR
@property
def model_type(self):
return self._model_type
@model_type.setter
def model_type(self, value):
if value not in ["positive", "negative", *list(self._adverse_ratio.keys()), "total"]:
raise ValueError("model type `{}` isn't valid. use \"positive\" or \"negative\" instead. ".format(value))
self._model_type = value
def create_matrix(self):
"""
creates the :ref:`patients_under_treat_matrix` matrix in :class:`Model` class
and the :ref:`patients_adversary_events_matrix` matrix in :class:`Model` class
:return:
:rtype: None
"""
# max_len = np.max([len(val) for val in self.patients_under_treat.values()])
# e = np.asarray([np.pad(val,
# (0, max_len - len(val)), mode='constant', constant_values=0) for val in input_dict.values()])
ordered_dict = OrderedDict(sorted(self.patients_under_treat.items(), key=lambda x: x[0]))
self.patients_under_treat_matrix = pd.DataFrame(list(ordered_dict.values())).fillna(0).values
ordered_dict = OrderedDict(sorted(self.patients_adversary_events.items(), key=lambda x: x[0]))
self.patients_adversary_events_matrix = pd.DataFrame(list(ordered_dict.values())).fillna(0).values
def query_patient_data(self, patient_id):
"""
:param int patient_id:
:return:
"""
param = {'phsid': patient_id}
tr = self.load_data.query_db(prone_change_queries.query, params=param)
tr2 = self.load_data.query_db(prone_change_queries.patients_query, params=param)
self.patients_data[patient_id] = tr.merge(tr2, how='left', on=['phsid']).copy()
return tr, tr2
def calculate_patient_under_treat(self, max_time, min_time, labels, patient_id):
"""
:param max_time:
:param min_time:
:param labels:
:param patient_id:
:return:
:return:
"""
df_patient = self.patients_data.get(patient_id)
df_time_frames = df_patient[['PF ratio', 'lab_time', 'toffset']].drop_duplicates().reset_index(drop=True)
df_time_frames['strata'] = pd.cut(df_time_frames.toffset,
range(min_time, max_time + self._TIME_FRAME, self._TIME_FRAME),
right=False, labels=labels)
df_time_frames['x'] = df_time_frames.groupby('strata')['strata'].transform('count')
df_temp_x = df_time_frames[['strata', 'x']].copy()
df_x_patient = pd.DataFrame(data={'strata': labels})
df_x_patient = df_x_patient.merge(df_temp_x, on='strata', how='left')
df_x_patient['x'] = np.where(df_x_patient['x'] > 0, 1, 0)
df_x_patient = df_x_patient.drop_duplicates().reset_index(drop=True)
self.patients_under_treat[patient_id] = df_x_patient.x.values
return
def calculate_patient_adv_events(self, max_time, min_time, labels, patient_id):
"""
:param max_time:
:param min_time:
:param labels:
:param patient_id:
:return:
"""
df_patient = self.patients_data.get(patient_id)
df_pf_diff = df_patient[["PF ratio", "lab_time"]].copy().drop_duplicates()
df_pf_diff['strata'] = pd.cut(df_pf_diff.lab_time,
range(min_time, max_time + self._TIME_FRAME, self._TIME_FRAME),
right=False, labels=labels) # type: pd.DataFrame
tolerance = 0
df_pf_diff.sort_values("lab_time", inplace=True)
df_pf_diff["dif"] = df_pf_diff["PF ratio"].diff()
df_pf_diff.reset_index(inplace=True, drop=True)
df_pf_diff['result'] = np.sign(df_pf_diff['dif'][np.abs(df_pf_diff['dif']) >= tolerance])
df_pf_diff.sort_values("strata", inplace=True)
df_y_patient = pd.DataFrame(data={'strata': labels})
adv_mask = None
if self._model_type == "positive":
adv_mask = "df_pf_diff[\"result\"] > 0"
elif self._model_type == "negative":
adv_mask = "df_pf_diff[\"result\"] <= 0"
elif self._model_type in self._adverse_ratio.keys():
max_val, min_val = self._adverse_ratio[self._model_type]
df_pf_diff[self._model_type] = ((df_pf_diff['PF ratio'] > min_val) & (df_pf_diff['PF ratio'] <= max_val))
adv_mask = "df_pf_diff[\"{}\"]".format(self._model_type)
elif self._model_type == "total":
df_pf_diff[self._model_type] = True
adv_mask = "df_pf_diff[\"{}\"]".format(self._model_type)
df_temp_y = pd.DataFrame(df_pf_diff['strata'][eval(adv_mask)].copy().value_counts().reset_index())
df_temp_y.columns = ['strata', 'y']
df_y_patient = df_y_patient.merge(df_temp_y, on='strata', how='inner', copy=True)
self.patients_adversary_events[patient_id] = df_y_patient.y.values
def calculate_patient_vectors(self, patient_id):
"""
:param patient_id:
:return:
"""
self.query_patient_data(patient_id)
df_patient = self.patients_data.get(patient_id) # type: pd.DataFrame
if df_patient.empty:
print("Patient {}, does not have records!".format(patient_id))
return
df_outliers = df_patient[df_patient["PF ratio"] > 550][["phsid", "lab_time"]]
if not df_outliers.empty:
self.outliers.append(df_outliers)
df_patient = df_patient[~(df_patient["PF ratio"] > 600)].reset_index(drop=True)
self.patients_data[patient_id] = df_patient
max_time = np.max([df_patient['lab_time'].max(), df_patient['toffset'].max()])
min_time = np.min([df_patient['lab_time'].min(), df_patient['toffset'].min()])
np.ceil((max_time - min_time + 1) / self._TIME_FRAME)
labels = ["{0} - {1}".format(i, (i + self._TIME_FRAME)) for i in range(min_time, max_time, self._TIME_FRAME)]
# fix the last time frame
temp = labels[-1].split(" ")
temp[-1] = str(max_time)
labels[-1] = " ".join(temp)
self.calculate_patient_under_treat(max_time, min_time, labels, patient_id)
self.calculate_patient_adv_events(max_time, min_time, labels, patient_id)
def create_model(self, method='SCCS'):
"""
this method creates the model, by calculating all the patients vectors and than convert it all to a matrix
:param method:
:return:
"""
df_patient = self.load_data.query_db(prone_change_queries.all_patiens_query, params=None)
patient_list = df_patient.values # type: np.ndarray[int]
for patient in patient_list:
print("Start calculating values for patient:{}".format(patient.item()))
if method == 'SCCS':
self.calculate_patient_vectors(patient.item())
elif method == 'naive':
self.calculate_naive_diff(patient.item())
print("Finished Calculating values")
# self.create_matrix()
def calculate_outliers(self):
for patient_id in self.patients_under_treat.keys():
for idx, val in enumerate(self.patients_under_treat[patient_id]):
if val > 0:
if self.patients_adversary_events[patient_id][idx] == 0:
self.outliers.append(patient_id)
print(self.outliers)
def calculate_naive_diff(self, patient_id):
tr, tr2 = self.query_patient_data(patient_id)
if tr.empty or tr2.empty:
print("Patient {}, does not have records!".format(patient_id))
return
tr.sort_values('lab_time', inplace=True)
tr2.sort_values('toffset', inplace=True)
# before
df2 = pd.merge_asof(tr2[['toffset']], tr[['lab_time', 'PF ratio']], right_on='lab_time', left_on='toffset',
direction='backward', tolerance=24 * 60) # type: pd.DataFrame
df2.rename(columns={"PF ratio": "Before"}, inplace=True)
df2['time_before'] = ((df2['toffset'] - df2['lab_time']) / 60).astype(float)
df4 = pd.merge_asof(tr2[['toffset']], tr[['lab_time', 'PF ratio']], right_on=['lab_time'], left_on='toffset',
direction='forward', tolerance=48 * 60) # type: pd.DataFrame
df4.rename(columns={"PF ratio": "After"}, inplace=True)
df4['time_after'] = ((df4['lab_time'] - df4['toffset']) / 60).astype(float)
df7 = pd.merge(df2[['toffset', 'Before', 'time_before']], df4[['toffset', 'After', 'time_after']],
on='toffset').copy()
df7['diff'] = df7['toffset'].diff()
df7 = df7[~(df7['After'].isnull()) & ~(df7['Before'].isnull())]
df7 = df7[(df7['diff'] > 2 * 60) | (df7['diff'].isnull())].reset_index(drop=True)
df7['pf delta'] = (df7['After'] / df7['Before']).astype(float)
self.patients_naive_vector[patient_id] = df7['pf delta'].values
def main():
model = Model()
time_frames = [12, 24]
model_types = ['positive', 'negative', 'Normal', 'Mild', 'Moderate', 'Severe', 'total']
# estimate_model(model=model, time_frames=time_frames, model_types=model_types)
model.create_model('naive')
keys = np.array(list(model.patients_under_treat.keys()))
pickle.dump(keys, open('keys.pkl', 'wb'))
res = model.patients_naive_vector
pickle.dump(res, open('naive_vecs.pkl', 'wb'))
model.calculate_outliers()
def estimate_model(model, time_frames, model_types):
"""
:param Model model: the ARDS model
:param list[int] time_frames: list of time frames to check (int)
:param list[str] model_types: the type of test to check
:return:
"""
for time_frame in time_frames:
print("Start estimating for {}H time frame".format(time_frame))
for model_type in model_types:
print("Estimating for model: {}".format(model_type))
model.time_frame = time_frame
model.model_type = model_type
model.create_model()
parameters_estimate = ParametersEstimate(model)
res = parameters_estimate.estimate()
print(res.x)
if __name__ == '__main__':
main()