forked from adamantine-sim/adamantine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
thermoelastic_bare_plate.info
144 lines (126 loc) · 3.23 KB
/
thermoelastic_bare_plate.info
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
geometry
{
import_mesh false ; Use built-in mesh generator
dim 3 ; dimension of the domain
length 36.0e-3 ; [m]
height 6.0e-3 ; [m] In 3D, the third parameters is width
width 6.0e-3
length_divisions 24 ; Number of cell layers in the length direction
height_divisions 3 ; Number of cell layers in the height direction
width_divisions 3
material_deposition true
material_deposition_method scan_paths
deposition_length 2.0e-3
deposition_height 2.0e-3
deposition_width 2.0e-3
deposition_lead_time 1.0e0
material_height 6.0e-3
}
physics
{
thermal true
mechanical true
}
discretization
{
thermal
{
fe_degree 3
quadrature gauss ; Optional parameter. Possibilities: gauss or lobatto
}
mechanical
{
fe_degree 1
}
}
boundary
{
type adiabatic ; convective,radiative
}
refinement
{
n_refinements 0 ; Number of time the cells on the paths of the beams are
; refined
time_steps_between_refinement 100 ; number of time steps after which
; the refinement process is performed
}
materials
{
n_materials 1
property_format polynomial
material_0
{
solid
{
density 7904; [kg/m^3] For now all the states needs to have the same
; density.
specific_heat 714; [J/kg K]
thermal_conductivity_x 31.4 ; [W/m K]
thermal_conductivity_y 31.4 ; [W/m K]
thermal_conductivity_z 31.4 ; [W/m K]
lame_first_parameter 92.0e9 ; [Pa]
lame_second_parameter 79.0e9 ; [Pa]
thermal_expansion_coef 17.2e-6 ; [1/K]
}
powder
{
specific_heat 714; [J/kg K]
density 7904; [kg/m^3]
thermal_conductivity_x 0.314 ; [W/m K]
thermal_conductivity_y 0.314 ; [W/m K]
thermal_conductivity_z 0.314 ; [W/m K]
}
liquid
{
specific_heat 847; [J/kg K]
density 7904; [kg/m^3]
thermal_conductivity_x 37.3 ; [W/m k]
thermal_conductivity_y 37.3 ; [W/m k]
thermal_conductivity_z 37.3 ; [W/m k]
; Not all three states need to define the same properties or to exist
}
solidus 1675; [K]
liquidus 1708; [K]
latent_heat 290000 ; [J/kg]
}
}
sources
{
n_beams 1
beam_0
{
type goldak ; goldak (laser) or electron_beam
depth 3.0e-3 ; [m] maximum depth reached by the laser
diameter 3.0e-3 ; [m]
scan_path_file thermoelastic_bare_plate_scan_path.txt
scan_path_file_format segment
absorption_efficiency 0.6 ; number between 0 and 1 equivalent to
; energy_conversion_efficiency * control_efficiency
; for an electron beam
max_power 9000.0 ; [W], current * voltage for an electron beam
}
}
time_stepping
{
method forward_euler ; Possibilities: backward_euler, implicit_midpoint,
; crank_nicolson, sdirk2, forward_euler, rk_third_order,
; rk_fourth_order
duration 4.0e0 ; [s]
time_step 4.0e-3 ; [s]
}
post_processor
{
filename_prefix output
time_steps_between_output 500
}
discretization
{
fe_degree 2
quadrature gauss ; Optional parameter. Possibilities: gauss or lobatto
}
profiling
{
timer false
caliper "spot(profile.mpi),loop-report,runtime-report"
}
memory_space host ; Always run on the host