This is the source code for MICCAI paper - "AngioMoCo: Learning-based Motion Correction in Digital Subtraction Angiography" ArXiv link
Install dependencies
# clone project
git clone https://github.com/RuishengSu/AnigoMoCo
cd AngioMoCo
# [OPTIONAL] create conda environment
conda create -n myenv python=3.9
conda activate myenv
# install pytorch according to instructions
# https://pytorch.org/get-started/
# install requirements
pip install -r requirements.txt
Train model with default configuration
# train on CPU
python src/train.py trainer=cpu
# train on GPU
python src/train.py trainer=gpu
Train model with chosen experiment configuration from configs/experiment/
python src/train.py experiment=experiment_name.yaml
You can override any parameter from command line like this
python src/train.py trainer.max_epochs=20 datamodule.batch_size=64