Description:
This is the demo version of the CalTrans Project real-time vehicle detection part
This version can process the video stream from the camera and detect the vehicles
Environment is based on the:
- opencv-python
- numpy, and Flask
Dowload the following files: - yolov3 weights
- yolov3.cfg
- coco.names
Place the yolov3.weights, yolov3.cfg, and coco.names in the same folder as the python script
Install run the following command:
pip install flask
pip install opencv-python
pip install numpy
Clone the repository:
git clone https://github.com/RuitaoWu/CalTransProjLearningModel.git
cd CalTransProjLearningModel
python3 app.py
Working Tree update
C:.
│ .gitignore
│ app.py
│ coco.names
│ config.ini
│ config.py
│ framemaker.py
│ GOPR0787.MP4
│ index.html
│ json_load.py
│ objRealTimeDectector.py
│ README.MD
│ result.json
│ test.mp4
│ viewcount.php
│ websocketdemo2.py
│ yolo.ipynb
│
├───data
│ test.csv
│
├───dumps
│ server.sql
│
├───static
│ │ app.js
│ │ chart.js
│ │ content.css
│ │ echarts.min.js
│ │ gallery.css
│ │ home.js
│ │ jQuery_mini.js
│ │ map.js
│ │ socket.io.min.js
│ │ socket.io.min.js.map
│ │ style.css
│ │ styles.css
│ │
│ └───images
│ .DS_Store
│ light gray.jpg
│ pic1.svg
│ point cloud.jpg
│ point cloud.svg
│ realtime-example.jpg
│
├───templates
│ index.html
│ websocketdemo2.html
│
├───YOLO
│ Readme
│ savayolo
│ yolov3.cfg
│ yolov3.weights
│
└───__pycache__
config.cpython-39.pyc
model.cpython-39.pyc
objRealTimeDectector.cpython-39.pyc