Skip to content

SSSKJ/HeroLT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HeroLT is a comprehensive long-tailed learning benchmark that examine long-tailed learning concerning three pivotal angles:

  1. (A1) the characterization of data long-tailedness: long-tailed data exhibits a highly skewed data distribution and an extensive number of categories;
  2. (A2) the data complexity of various domains: a wide range of complex domains may naturally encounter long-tailed distribution, e.g., tabular data, sequential data, grid data, and relational data; and
  3. (A3) the heterogeneity of emerging tasks: it highlights the need to consider the applicability and limitations of existing methods on heterogeneous tasks.

We provide a fair and accessible performance evaluation of 13 state-of-the-art methods on multiple benchmark datasets across multiple tasks using accuracy-based and ranking-based evaluation metrics.

| Code Structure | Quick Start | Algorithms | Datasets | Example | Publications |


Code Structure

HeroLT
├── HeroLT
│   ├── configs                  # Customizable configurations 
│   ├── data                     # Datasets in HeroLT 
│   |   ├── ... ..
│   ├── nn       
│   |   ├── Dataloaders
│   |   ├── Datasets    
│   |   ├── layers              
│   |   ├── Models              
│   |   ├── Modules             
│   |   ├── Samplers
│   |   ├── Schedulers
│   |   ├── Wrappers            # Algorithms in HeroLT
│   |   ├── loss                # Loss functions in long-tailed learning 
│   |   ├── pecos
│   |   ├── xbert
│   ├── outputs                          
│   |   ├── ... ..
│   ├── tools                          
│   |   ├── ... ..
│   ├── utils                   # utility functions and classes      
│   |   ├── ... ..                 
├── examples                    # Examples of running the specific method
├── figs
└── README.md

Quick Start

We provide the following example for users to quickly implementing HerolT.

Step 1. Dependency

First of all, users need to clone the source code and install the required packages:

  • torch==1.10.2
  • torch-geometric==2.0.4
  • torchvision
  • numpy==1.21.5
  • scipy==1.7.3
  • scikit-learn==1.1.1

Step 2. Prepare datasets

To run an LT task, users should prepare a dataset. The DataZoo provided in HeroLT can help to automatically download and preprocess widely-used public datasets for various LT applications, including CV, NLP, graph learning, etc. Users can directly specify dataset = DATASET_NAMEin the configuration. For example,

GraphSMOTE('wiki', './HeroLT/')

Step 3. Prepare models

Then, users should specify the model architecture that will be trained. HeroLT provides a ModelZoo that contains the implementation of widely adopted model architectures for various LT tasks. Users can import MODEL_NAME to apply a specific model architecture in LT tasks. For example,

from HeroLT.nn.Wrappers import GraphSMOTE

Step 4. Start running

Here we demonstrate how to run a standard LT task with HeroLT, with setting dataset = 'wiki'and import GraphSMOTE to run GraphSMOTE for an node classification task on Cora_Full dataset. Users can customize training configurations, such as lr, in the configs/GraphSMOTE/config.yaml, and run a standard LT task as:

# Run with default configurations
from HeroLT.nn.Wrappers import GraphSMOTE
model = GraphSMOTE('wiki', './HeroLT/')
model.train()

Then you can observe some monitored metrics during the training process as:

============== seed:123 ==============
[seed 123][GraphSMOTE][Epoch 0][Val] ACC: 21.6, bACC: 17.9, Precision: 16.5, Recall: 16.8, mAP: 15.7|| [Test] ACC: 18.8, bACC: 13.3, Precision: 16.5, Recall: 13.3, mAP: 11.6
  [*Best Test Result*][Epoch 0] ACC: 18.8,  bACC: 13.3, Precision: 16.5, Recall: 13.3, mAP: 11.6
[seed 123][GraphSMOTE][Epoch 100][Val] ACC: 68.1, bACC: 60.5, Precision: 60.5, Recall: 60.5, mAP: 59.8|| [Test] ACC: 68.0, bACC: 54.1, Precision: 56.7, Recall: 54.1, mAP: 53.2
  [*Best Test Result*][Epoch 100] ACC: 68.0,  bACC: 54.1, Precision: 56.7, Recall: 54.1, mAP: 53.2
[seed 123][GraphSMOTE][Epoch 200][Val] ACC: 67.7, bACC: 59.0, Precision: 57.9, Recall: 59.0, mAP: 58.4|| [Test] ACC: 67.4, bACC: 54.1, Precision: 56.7, Recall: 54.1, mAP: 52.9
  [*Best Test Result*][Epoch 102] ACC: 67.8,  bACC: 54.0, Precision: 56.4, Recall: 54.0, mAP: 53.2
[seed 123][GraphSMOTE][Epoch 300][Val] ACC: 67.2, bACC: 58.6, Precision: 58.9, Recall: 58.6, mAP: 58.0|| [Test] ACC: 67.1, bACC: 53.6, Precision: 57.7, Recall: 53.6, mAP: 52.3
  [*Best Test Result*][Epoch 102] ACC: 67.8,  bACC: 54.0, Precision: 56.4, Recall: 54.0, mAP: 53.2
... ...

Algorithms

HeroLT includes 13 algorithms, as shown in the following Table.

Algorithm Venue Long-tailedness Task
X-Transformer 20KDD Data imbalance, extreme # of categories Multi-label text classification
XR-Transformer 21NeurIPS Data imbalance, extreme # of categories Multi-label text classification
XR-Linear 22KDD Data imbalance, extreme # of categories Multi-label text classification
BBN 20CVPR Data imbalance Image classification
BALMS 20NeurIPS Data imbalance Image classification, Instance segmentation
OLTR 19CVPR Data imbalance, extreme # of categories Image classification
TDE 20NeurIPS Data imbalance, extreme # of categories Image classification
MiSLAS 21CVPR Data imbalance Image classification
Decoupling 20ICLR Data imbalance Image classification
GraphSMOTE 21WSDM Data imbalance Node classification
ImGAGN 21KDD Data imbalance Node classification
TailGNN 21KDD Data imbalance, extreme # of categories Node classification
LTE4G 22CIKM Data imbalance, extreme # of categories Node classification

Datasets

HeroLT includes 14 datasets, as shown in the following Table.

Data Statistics Long-Tailedness
Dataset Data # of Categories Size # of Edges IF Gini Pareto
EURLEX-4K Sequential 3,956 15,499 - 1,024 0.342 3.968
AMAZONCat-13K Sequential 13,330 1,186,239 - 355,211 0.327 20.000
Wiki10-31K Sequential 30,938 14,146 - 11,411 0.312 4.115
ImageNet-LT Grid 1,000 115,846 - 256 0.517 1.339
Places-LT Grid 365 62,500 - 996 0.610 2.387
iNatural 2018 Grid 8,142 437,513 - 500 0.647 1.658
CIFAR 10-LT (100) Grid 10 12,406 - 100 0.617 1.751
CIFAR 10-LT (50) Grid 10 13,996 - 50 0.593 1.751
CIFAR 10-LT (10) Grid 10 20,431 - 10 0.520 0.833
CIFAR 100-LT (100) Grid 100 10,847 - 100 0.498 1.972
CIFAR 100-LT (50) Grid 100 12,608 - 50 0.488 1.590
CIFAR 100-LT (10) Grid 100 19,573 - 10 0.447 0.836
LVIS v0.5 Grid 1,231 693,958 - 26,148 0.381 6.250
Cora-Full Relational 70 19,793 146,635 62 0.321 0.919
Wiki Relational 17 2,405 25,597 45 0.414 1.000
Email Relational 42 1,005 25,934 109 0.413 1.263
Amazon-Clothing Relational 77 24,919 208,279 10 0.343 0.814
Amazon-Eletronics Relational 167 42,318 129,430 9 0.329 0.600

Example

Here, we present a motivative application of the recommendation system, which naturally exhibits long-tailed data distributions coupled with data complexity [2] (e.g., tabular data and relational data) and task heterogeneity (e.g., user profiling [1] and recommendation [2]).

[1] E. Purificato, L. Boratto, and E. W. De Luca, “Do graph neural networks build fair user models? assessing disparate impact and mistreatment in behavioural user profiling”. CIKM 2022.

[2] F. Liu, Z. Cheng, L. Zhu, C. Liu, and L. Nie, “An attribute-aware attentive GCN model for attribute missing in recommendation”. IEEE Transactions on Knowledge and Data Engineering 2022.

Publications

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages