Skip to content

Sanjay126/LeavesRecognitionCNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LeavesRecognitionCNN

This is an implementation of paper [A Convolutional Neural Network for Leaves Recognition Using Data Augmentation] (https://ieeexplore.ieee.org/document/7363364).

Prerequisites

  • Python 3.6
  • keras 2.2.4 *script written below is for UBUNTU but you can run it on windows as well.

Running

for training
python main-run.py --numEpochs 100 \
--imgSize (256,256) \
--momentum 0.9 \
--decay 0.06 \
--learnRate 0.01 \
--batchSize 80 \
--noOfLayers 5\
--lossfn 'categorical_crossentropy'\
--outDir 'outData'\
--inpDir './data'\
--loadModel None \
--plot True\
--noOfWorkers 4\
--dataAug True


This saves the trained model in specified output directory and plots different training metrics.
for testing
python main-run.py --numEpochs 100 \
--imgSize (256,256) \
--momentum 0.9 \
--decay 0.06 \
--learnRate 0.01 \
--batchSize 80 \
--noOfLayers 5\
--lossfn 'categorical_crossentropy'\
--outDir 'outData'\
--inpDir './data'\
--loadModel 'Datamodel.hdf5'\
--plot True\
--noOfWorkers 4\
--dataAug True

This loads the specified model and prints test loss and accuracy.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages