Skip to content

A MATLAB implementation of PIFW-kNN (Nimagna Biswas, Saurajit Chakraborty, Sankha Subhra Mullick, and Swagatam Das, A Parameter Independent Fuzzy Weighted k-Nearest Neighbor Classifier, Pattern Recognition Letters, November, 2017)

License

Notifications You must be signed in to change notification settings

SankhaSubhra/PIFW-kNN

Repository files navigation

A MATLAB implementation of PIFW-kNN.

Written by: Nimagna Biswas and Saurajit Chakraborty.

Reference: Nimagna Biswas, Saurajit Chakraborty, Sankha Subhra Mullick, and Swagatam Das, A Parameter Independent Fuzzy Weighted k-Nearest Neighbor Classifier, Pattern Recognition Letters, November, 2017.

Contact: nimagna0072@gmail.com (Nimagna Biswas), rik.stxaviers@gmail.com (Saurajit Chakraborty).

DESCRIPTION:

  • The package contains 9 functions, 1 script and 1 sample dataset from UCI repository [1].
  • pifwknn.m: The main script.
  • shade.m: Implementation of SHADE [2].
  • fitness.m. Calculates the leave-one-ot error for a value of k and set of class specific feature weights.
  • wtdistance.m: Claculates weighted distance as described in the corresponding article.
  • membership_assignment.m: Calculates the fuzzy membership matrix.
  • fuzzy_knn.m: Supporting function.
  • extract.m: Supporting function.
  • wt_Mean.m: Supporting function.
  • wt_Lehmer_Mean.m: Supporting function.
  • cauchy_rand.m: Supporting function.
  • Balance_Scale.mat: Example dataset.

=============================================================================================

DEPENDENCIES:

  • MATLAB 2014a and above.
  • The source code and data files must be in the same folder.
  • Load the dataset (.mat format) in the workspace and run the script named 'pifwknn.m'.
  • Please read 'pifwknn.m' (or Balance_Scale.mat) for further arrangement of the dataset.

=============================================================================================

REFERENCE:

  • [1] Lichman, M., 2013. UCI machine learning repository. URL: http://archive.ics.uci.edu/ml.
  • [2] Tanabe, R., Fukunaga, A., 2013. Success-history based parameter adaptation for differential evolution, in: IEEE CEC, pp. 71–78.

About

A MATLAB implementation of PIFW-kNN (Nimagna Biswas, Saurajit Chakraborty, Sankha Subhra Mullick, and Swagatam Das, A Parameter Independent Fuzzy Weighted k-Nearest Neighbor Classifier, Pattern Recognition Letters, November, 2017)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages