-
Notifications
You must be signed in to change notification settings - Fork 1
/
test.py
184 lines (157 loc) · 6.77 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#for evaluating model
import numpy as np
import torch
import math
def test(net, loader):
net.eval()
ap_meter= AveragePrecisionMeter()
for i, (X, y) in enumerate(loader):
# Pass to gpu or cpu
X, y = X.cuda().float(), y.cuda().float()
with torch.no_grad():
out = net(X)
ap_meter.add(out.cpu().detach(), y.cpu())
map = ap_meter.value().mean().cpu().detach().numpy()
OP, OR, OF1, CP, CR, CF1 = ap_meter.overall()
return map*100, OP*100, OR*100, OF1*100, CP*100, CR*100, CF1*100
def compute_cover(labels, outputs):
n_labels = labels.shape[1]
loss = coverage_error(labels, outputs)
return (loss-1)/n_labels
class AveragePrecisionMeter(object):
"""
The APMeter measures the average precision per class.
The APMeter is designed to operate on `NxK` Tensors `output` and
`target`, and optionally a `Nx1` Tensor weight where (1) the `output`
contains model output scores for `N` examples and `K` classes that ought to
be higher when the model is more convinced that the example should be
positively labeled, and smaller when the model believes the example should
be negatively labeled (for instance, the output of a sigmoid function); (2)
the `target` contains only values 0 (for negative examples) and 1
(for positive examples); and (3) the `weight` ( > 0) represents weight for
each sample.
"""
def __init__(self, difficult_examples=True):
super(AveragePrecisionMeter, self).__init__()
self.reset()
self.difficult_examples = difficult_examples
def reset(self):
"""Resets the meter with empty member variables"""
self.scores = torch.FloatTensor(torch.FloatStorage())
self.targets = torch.LongTensor(torch.LongStorage())
def add(self, output, target):
"""
Args:
output (Tensor): NxK tensor that for each of the N examples
indicates the probability of the example belonging to each of
the K classes, according to the model. The probabilities should
sum to one over all classes
target (Tensor): binary NxK tensort that encodes which of the K
classes are associated with the N-th input
(eg: a row [0, 1, 0, 1] indicates that the example is
associated with classes 2 and 4)
weight (optional, Tensor): Nx1 tensor representing the weight for
each example (each weight > 0)
"""
if not torch.is_tensor(output):
output = torch.from_numpy(output)
if not torch.is_tensor(target):
target = torch.from_numpy(target)
if output.dim() == 1:
output = output.view(-1, 1)
else:
assert output.dim() == 2, \
'wrong output size (should be 1D or 2D with one column \
per class)'
if target.dim() == 1:
target = target.view(-1, 1)
else:
assert target.dim() == 2, \
'wrong target size (should be 1D or 2D with one column \
per class)'
if self.scores.numel() > 0:
assert target.size(1) == self.targets.size(1), \
'dimensions for output should match previously added examples.'
# make sure storage is of sufficient size
if self.scores.storage().size() < self.scores.numel() + output.numel():
new_size = math.ceil(self.scores.storage().size() * 1.5)
self.scores.storage().resize_(int(new_size + output.numel()))
self.targets.storage().resize_(int(new_size + output.numel()))
# store scores and targets
offset = self.scores.size(0) if self.scores.dim() > 0 else 0
self.scores.resize_(offset + output.size(0), output.size(1))
self.targets.resize_(offset + target.size(0), target.size(1))
self.scores.narrow(0, offset, output.size(0)).copy_(output)
self.targets.narrow(0, offset, target.size(0)).copy_(target)
def value(self):
"""Returns the model's average precision for each class
Return:
ap (FloatTensor): 1xK tensor, with avg precision for each class k
"""
if self.scores.numel() == 0:
return 0
ap = torch.zeros(self.scores.size(1))
rg = torch.arange(1, self.scores.size(0)).float()
# compute average precision for each class
for k in range(self.scores.size(1)):
# sort scores
scores = self.scores[:, k]
targets = self.targets[:, k]
# compute average precision
ap[k] = AveragePrecisionMeter.average_precision(scores, targets, self.difficult_examples)
return ap
@staticmethod
def average_precision(output, target, difficult_examples=True):
# sort examples
sorted, indices = torch.sort(output, dim=0, descending=True)
# Computes prec@i
pos_count = 0.
total_count = 0.
precision_at_i = 0.
for i in indices:
label = target[i]
if difficult_examples and label == 0:
continue
if label == 1:
pos_count += 1
total_count += 1
if label == 1:
precision_at_i += pos_count / total_count
precision_at_i /= pos_count
return precision_at_i
def overall(self):
if self.scores.numel() == 0:
return 0
scores = self.scores.cpu().numpy()
targets = self.targets.cpu().numpy()
targets[targets == -1] = 0
return self.evaluation(scores, targets)
def overall_topk(self, k):
targets = self.targets.cpu().numpy()
targets[targets == -1] = 0
n, c = self.scores.size()
scores = np.zeros((n, c)) - 1
index = self.scores.topk(k, 1, True, True)[1].cpu().numpy()
tmp = self.scores.cpu().numpy()
for i in range(n):
for ind in index[i]:
scores[i, ind] = 1 if tmp[i, ind] >= 0 else -1
return self.evaluation(scores, targets)
def evaluation(self, scores_, targets_):
n, n_class = scores_.shape
Nc, Np, Ng = np.zeros(n_class), np.zeros(n_class), np.zeros(n_class)
for k in range(n_class):
scores = scores_[:, k]
targets = targets_[:, k]
targets[targets == -1] = 0
Ng[k] = np.sum(targets == 1)
Np[k] = np.sum(scores >= 0)
Nc[k] = np.sum(targets * (scores >= 0))
Np[Np == 0] = 1
OP = np.sum(Nc) / np.sum(Np)
OR = np.sum(Nc) / np.sum(Ng)
OF1 = (2 * OP * OR) / (OP + OR)
CP = np.sum(Nc / Np) / n_class
CR = np.sum(Nc / Ng) / n_class
CF1 = (2 * CP * CR) / (CP + CR)
return OP, OR, OF1, CP, CR, CF1