Skip to content

Shohruh72/L2CSNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

L2CS-Net: Fine-Grained Gaze Estimation

Vizualization Gaze Estimation

Structure

  • nn.py: Defines the L2CS neural network architecture.
  • util.py: Contains utility functions and classes.
  • datasets.py: Handles data loading, preprocessing, and augmentation.
  • main.py: The main executable script that sets up the model, performs training,testing, and inference.

Installation

conda create -n PyTorch python=3.9
conda activate PyTorch
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
pip install opencv-python==4.5.5.64
pip install scipy
pip install tqdm
pip install timm

Gaze360 Dataset Preparation

  • Download Gaze360 dataset from here.

  • Apply data preprocessing from here.

Train

  • Configure your dataset path in main.py for training
  • Run python main.py --train for Single-GPU training
  • Run bash main.sh $ --train for Multi-GPU training, $ is number of GPUs

Test

  • Configure your dataset path in main.py for testing
  • Run python main.py --test for testing

Demo

  • Configure your video path in main.py for visualizing the demo
  • Run python main.py --demo for demo

Results

Backbone Epochs MAE Model
ResNet18 180 10.6 weight
ResNet18* 180 11.2

* means that the results are from original repo, see reference

Reference

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages