This is the implementation of CPGA-Net based on Pytorch.
Journal Paper (Under Review, ArXiV) A Lightweight Low-Light Image Enhancement Network via Channel Prior and Gamma Correction
Conference Paper (IEEE ICCE-TW) Exposure Correction in Driving Scenes Using the Atmospheric Scattering Model
- 2024/02/29 Preprint released
- 2023/11/17 Upload repository
- clone the project
- install Pytorch
- execute the following instruction:
// python=3.8
pip install -r requirements.txt
- make sure these modules have been successfully installed
Prepare your data, split it into Low-Light images and Normal Light images, both image folder should be paired and the same pair of images should be have the same name. It should be almost the same as original listing way.
The training of CPGA-DGF (DGF) with knowledge distillation is not available in current version.
python train.py \
"--epochs" 10" , \
"--net_name" YOUR_NETNAME" , \
"--lr" 1e-4",
"--num_workers" 2" , \
"--batch_size" 16" , \
"--val_batch_size" 1" , \
"--model_dir" ,"./models" , \
"--log_dir" ./logs", \
"--sample_output_folder" ./samples/", \
"--ori_data_path" LOL_TRAIN_HIGH", \
"--haze_data_path" LOL_TRAIN_LOW", \
"--val_ori_data_path" LOL_TEST_HIGH" , \
"--val_haze_data_path" LOL_TEST_LOW" , \
"--dataset_type" LOL-v1", \
"--ckpt" weights/enhance_color-llie-ResCBAM_g.pkl"
"--efficient" //DGF version
python demo_enhanced.py \
"--net_name" YOUR_NETNAME" , \
"--val_ori_data_path" LOL_TEST_HIGH" , \
"--val_haze_data_path" LOL_TEST_LOW" , \
"--dataset_type" LOL-v1", \
"--num_workers" 1" , \
"--val_batch_size" 1" , \
"--ckpt" weights/enhance_color-llie-ResCBAM_g.pkl"
"--efficient" //DGF version
python demo_enhanced_video.py \
"--output_name" OUTPUT_PATH", \
"--video_dir" VIDEO_PATH_or_IMAGE_SEQ_DIR" , \
"--num_workers" 0" , \
"--val_batch_size" 1", \
"--ckpt" weights/enhance_color-llie-ResCBAM_g.pkl"
python evaluation.py \
"--dirA" DIR_A", \
"--dirB" DIR_B"
"--ori_data_path" LOLv2_PATH", \
"--haze_data_path" LOLv2_PATH", \
"--val_ori_data_path" LOLv2_PATH", \
"--val_haze_data_path" LOLv2_PATH", \
"--dataset_type" LOL-v2-real", //"LOL-v2-real" or "LOL-v2-Syn"
"--ori_data_path" TRAIN_GT_IMAGES", \
"--haze_data_path" TRAIN_INPUT_IMAGES", \
"--val_ori_data_path" VAL_GT_IMAGES", \
"--val_haze_data_path" VAL_INPUT_IMAGES", \
"--dataset_type" expe",
"--val_ori_data_path" INPUT_IMAGES_PATH", \
"--val_haze_data_path" INPUT_IMAGES_PATH", \
"--dataset_type" LOL-v1",
"--val_ori_data_path" Unpaired_PATH" , \
"--val_haze_data_path" Unpaired_PATH" , \
"--dataset_type" LOL-v1",
"--val_ori_data_path" /mnt/d/datasets/exposure error/testing/INPUT_IMAGES",\
"--val_haze_data_path" /mnt/d/datasets/exposure error/testing/INPUT_IMAGES",\
"--dataset_type" LOL-v1",
The weights provided are not optimal solutions mentioned in the paper. Only for testing. CPGA-Net
weights/enhance_color-llie-ResCBAM_g.pkl
CPGA-Net (DGF)
weights/enhance_color-llie-ResCBAM_g-8-DGF.pkl
The metrics were calculated by The evaluation code from HWMNet
Flops were calculated by fvcore
Flops and Inference time per image were using a input with 600×400×3 random generated tensor for testing with GPU Nvidia GeForce 3090
PSNR (dB) | SSIM | LPIPS | Flops(G) | Params(M) | Inference Speed | |
---|---|---|---|---|---|---|
CPGA-Net | 20.94 | 0.748 | 0.260 | 6.0324 | 0.0254 | 28.256 |
CPGA-Net (DGF) | 20.31 | 0.701 | 0.291 | 1.0970 | 0.0184 | 6.090 |
MEF | LIME | NPE | VV | DICM | Avg | |
---|---|---|---|---|---|---|
CPGA-Net | 3.8698 | 3.7068 | 3.5476 | 2.2641 | 2.6934 | 3.216 |
CPGA-Net (DGF) | 3.8272 | 3.834 | 3.4975 | 2.2336 | 3.0361 | 3.286 |
PSNR (dB) | SSIM | LPIPS | PI | |
---|---|---|---|---|
CPGA-Net | 19.90 | 0.809 | 0.184 | 2.428 |
CPGA-Net for EdgeAI (Jetson Nano)
CPGA-Net for EdgeAI (neural compute stick 2)
Lots of code were borrowed from pytorch version of AOD-Net
Evaluation code was borrowed from HWMNet
The efficient version is based on FastGuidedFilter.
@article{weng2024lightweight,
title={A Lightweight Low-Light Image Enhancement Network via Channel Prior and Gamma Correction},
author={Weng, Shyang-En and Miaou, Shaou-Gang and Christanto, Ricky},
journal={arXiv preprint arXiv:2402.18147},
year={2024}
}
@inproceedings{weng2024exposure,
title={Exposure Correction in Driving Scenes Using the Atmospheric Scattering Model},
author={Weng, Shyang-En and Miaou, Shaou-Gang and Christanto, Ricky and Hsu, Chang-Pin},
booktitle={2024 International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan)},
pages={493--494},
year={2024},
organization={IEEE}
}