Skip to content

Silpa1/MC_comparison_of_algorithms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Comparison_of_algorithms_MC_TCI_Retrospective

Folder contains codes for TCI submission 2022. We used same parameters as author provided.

=================================================================================

Comparison of ktslr, L+S-Otazo, L+S-Lin, altGDMin-MRI and altGDMin-MRI2.

To generate Table II results:

This code requires the Matlab version of the Michigan Image Reconstruction Toolbox (MIRT) from [http://web.eecs.umich.edu/~fessler/code/index.html] Please set up MIRT before running the examples. Run the mirt-main/setup.m: L+S-Lin code requires the Matlab version of the Michigan Image Reconstruction Toolbox (MIRT). Run Main_files_retrospective.m: This run all the 5 algorithms and calculate NMSE (Normalized Mean Square Error), Recon Time required and save these results in Comparison_error.txt [Error(Time)] amd Comparison_sim.txt [sim(Time)].

===================================================================================

For datasets and questions contact email sbabu@iastate.edu, namrata@iastate.edu.

If you are using our code please cite our paper: S. Babu, S. S. Nayer, S. G. Lingala and N. Vaswani, "Fast Low Rank Column-Wise Compressive Sensing For Accelerated Dynamic MRI," ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 1346-1350, doi: 10.1109/ICASSP43922.2022.9747549. : Babu S, Lingala SG, Vaswani N. Fast low rank column-wise compressive sensing for accelerated dynamic MRI. IEEE transactions on computational imaging. 2023 Apr 17.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published