Skip to content

Pytorch implementation of "Action Unit Detection with Region Adaptation, Multi-labeling Learning and Optimal Temporal Fusing"

Notifications You must be signed in to change notification settings

SilverFI/ROI-Nets-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 

Repository files navigation

ROI-Nets pytorch version

How to use:

  • clone codes
  • download vgg pretrained parameters vgg16 in data directory
  • prepare labels for every image, the format is shown in data/labels_224_landmarks_sample.txt
  • modify parameters in lib/train_test.py, like image_dir,save_dir,person_batch
  • run code: cd lib; CUDA_VISIBLE_DEVICES=0 python train_test.py

Result:

  1. train loss
    train loss
  2. train f1
    train f1
  3. result
    result

About

Pytorch implementation of "Action Unit Detection with Region Adaptation, Multi-labeling Learning and Optimal Temporal Fusing"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages