Skip to content

Transformer Tracking with Cyclic Shifting Window Attention (CSWinTT)

License

Notifications You must be signed in to change notification settings

SkyeSong38/CSWinTT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CSWinTT

The official implementation of the CVPR 2022 paper Transformer Tracking with Cyclic Shifting Window Attention

[Models and Raw results] (Google Driver) or [Models and Raw results] (Baidu Driver: bsa2).

CSWinTT_Framework

Highlights

Introduction

CSWinTT is a new transformer architecture with multi-scale cyclic shifting window attention for visual object tracking, elevating the attention from pixel to window level. The cross-window multi-scale attention has the advantage of aggregating attention at different scales and generates the best fine-scale match for the target object.

Performance

Tracker UAV123 (AUC) LaSOT (NP) TrackingNet (NP) GOT-10K (AO)
CSWinTT 70.5 75.2 86.7 69.4

Install the environment

conda create -n cswintt python=3.7
conda activate cswintt
bash install.sh

Data Preparation

Put the tracking datasets in ./data. It should look like:

${CSWinTT_ROOT}
 -- data
     -- lasot
         |-- airplane
         |-- basketball
         |-- bear
         ...
     -- got10k
         |-- test
         |-- train
         |-- val
     -- trackingnet
         |-- TRAIN_0
         |-- TRAIN_1
         ...
         |-- TRAIN_11
         |-- TEST

Run the following command to set paths for this project

python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir .

After running this command, you can also modify paths by editing these two files

lib/train/admin/local.py  # paths about training
lib/test/evaluation/local.py  # paths about testing

Train CSWinTT

python tracking/train.py --script cswintt --config baseline_cs --save_dir . --mode single 
python tracking/train.py --script cswintt_cls --config baseline_cs --save_dir . --mode single --script_prv cswintt --config_prv baseline_cs  

Test CSWinTT

Download the model and put it in output/checkpoints

  • UAV123
python tracking/test.py cswintt baseline_cs --dataset uav --threads 32
  • LaSOT
python tracking/test.py cswintt baseline_cs --dataset lasot --threads 32
  • GOT10K-test
python tracking/test.py cswintt baseline_got10k_only --dataset got10k_test --threads 32
  • TrackingNet
python tracking/test.py cswintt baseline_cs --dataset trackingnet --threads 32

Model Zoo and raw results

The trained models and the raw tracking results are provided in the [Models and Raw results] (Google Driver) or [Models and Raw results] (Baidu Driver: bsa2).

Contact

Zikai Song: skyesong@hust.edu.cn

Acknowledgments

  • Thanks for the PyTracking Library and STARK Library, which helps us to quickly implement our ideas.

About

Transformer Tracking with Cyclic Shifting Window Attention (CSWinTT)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published