A PyTorch implementation of "ArtCoder: An End-to-end Method for Generating Scanning-robust Stylized QR Codes".
The paper "ArtCoder: An End-to-end Method for Generating Scanning-robust Stylized QR Codes" has been accepted by CVPR 2021. If the paper or code is useful for your research, please cite
@inproceedings{su2021artcoder,
title={ArtCoder: An End-to-End Method for Generating Scanning-Robust Stylized QR Codes},
author={Su, Hao and Niu, Jianwei and Liu, Xuefeng and Li, Qingfeng and Wan, Ji and Xu, Mingliang and Ren, Tao},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={2277--2286},
year={2021}
}
Style&Content | Output |
- Linux or Windows
- CPU or NVIDIA GPU + CUDA CuDNN
- Python 3
- Pytorch 1.7.0
- Clone this repo:
git clone https://github.com/SwordHolderSH/ArtCoder
cd ArtCoder
- Install PyTorch and other dependencies.
- Get detailed information about all parameters using
python main.py -h
- Generate your customized Stylized QR codes:
python main.py -style_img_path ./xxxx/xxx.jpg --content_img_path ./xxxx/xxx.jpg --code_img_path ./xxxx/xxx.jpg --output_dir ./xxxx/
- The input code images are generated by the algorithm on the website https://meiyaoma.com/ . Of course, it is OK to use traditional QR codes (square modules appear as random distribution) as the input code images, and it just compromises some visual quality.
- The QR codes of version 5 is used by default
(37*37 modules)
. If you want to use different versions of QR code, you need to adjust the parameters--module_number (default: 37)
.