🚀YOLOC is Combining different modules to build an different Object detection model.
🌟Combining some modules and tricks to improve the YOLO detection model, the effect of using different datasets is inconsistent. Need to try and verify through specific experiments
-
主流 🚀YOLOv3 模型网络结构;
-
主流 🚀YOLOv4 模型网络结构;
-
主流 🚀Scaled_YOLOv4 模型网络结构;
-
主流 🚀YOLOv5 模型网络结构;
-
主流 🚀YOLOv6 模型网络结构;
-
主流 🚀YOLOv7 模型网络结构;
-
主流 🚀YOLOX 模型网络结构;
-
主流 🚀YOLOR 模型网络结构;
-
🚀PicoDet 模型网络结构;
-
transformer架构的backbone、neck、head;
-
改进的transformer系列的backbone、neck、head;
-
Attention系列的backbone、neck、head;
-
基于anchor-free和anchor-based的检测器;
-
🍉FPN、PANet、BiFPN等结构;
-
🍉CIoU、DIoU、GIoU、EIoU、SIoU等损失函数;
-
🍉NMS、Merge-NMS、Soft-NMS等NMS方法;
-
🍉SE、CBAM、ECA、BAM、DANet...详细链接🔗 等30+ Attention注意力机制;
-
🍉SiLU、Hardswish、Mish、MemoryEfficientMish、FReLU、AconC、MetaAconC等激活函数;
-
🍉Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, CBAM, ResBlock_CBAM, CoordAtt, CrossConv, C3, CTR3, Involution, C3SPP, C3Ghost, CARAFE, nn.ConvTranspose2d, DWConvTranspose2d, C3x, SPPCSPC, GhostSPPCSPC, BottleneckCSPA, BottleneckCSPB, ConvSig, BottleneckCSPC, RepConv, RepConv_OREPA, RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC, Res, ResCSPA, ResCSPB, ResCSPC, RepRes, RepResCSPA, RepResCSPB, RepResCSPC, ResX, ResXCSPA, ResXCSPB, ResXCSPC, RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC, Ghost, GhostCSPA, GhostCSPB, GhostCSPC, SwinTransformerBlock, STCSPA, STCSPB, STCSPC, SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC, conv_bn_relu_maxpool, Shuffle_Block, RepVGGBlock, CBH, LC_Block, Dense, DWConvblock, BottleneckCSP2, DWT, BottleneckCSP2SAM, VoVCSP等网络模型组合模块 代码 ./models/common.py文件 内搜索🔍👉对应模块链接🔗 ... ...
更新中
- ✅ yolov6s
- ✅ yolov6n
- ✅ yolov6m
- ✅ yolov6l
- ✅ yolov6x ...
- ✅ yolox n
- ✅ yolox tiny
- ✅ yolox s
- ✅ yolox m
- ✅ yolox l
- ✅ yolox x
- ✅ yolox xs ...
- ✅ yolov7
- ✅ yolov7-tiny
- ✅ yolov7-tiny-silu
- ✅ yolov7x ...
- ✅ yolov5n
- ✅ yolov5s
- ✅ yolov5m
- ✅ yolov5l
- ✅ yolov5x
- ✅ yolov5s_cbam
- ✅ yolov5Lite-s.yaml
- ✅ yolov5Lite-g.yaml
- ✅ yolov5Lite-c.yaml
- ✅ yolov5Lite-e.yaml
- ✅ yolov5-bifpn
- ✅ yolov5-fpn
- ✅ yolov5-p2
- ✅ yolov5-p6
- ✅ yolov5-p7
- ✅ yolov5-panet
- ✅ yolov5l6
- ✅ yolov5m6
- ✅ yolov5n6
- ✅ yolov5s6
- ✅ yolov5x6
- ✅ yolov5s-ghost
- ✅ yolov5-transformer 更多配置请查看 ./configs/yolo_combining 文件 ... ...
- ✅ yolov4-p5
- ✅ yolov4-p6
- ✅ yolov4-p7 ...
- ✅ yolor-csp
- ✅ yolor-csp-x
- ✅ r50-csp
- ✅ x50-csp
- ✅ yolor-d6
- ✅ yolor-e6
- ✅ yolor-p6
- ✅ yolor-w6
- ✅ yolor-ssss-dwt
- ✅ yolor-ssss-s2d ...
- ✅ yolov3-spp
- ✅ yolov3-tiny
- ✅ yolov3 ...
- ✅ yolov4s-mish
- ✅ yolov4m-mish
- ✅ yolov4l-mish
- ✅ yolov4x-mish
- ✅ yolov4-csp
- ✅ csp-p6-mish
- ✅ csp-p7-mish ...
- ✅ PicoDet-l
- ✅ PicoDet-m
- ✅ PicoDet-s
- ✅ PicoDet-x ...
- CIoU(默认)
# 代码
python train.py --loss_category CIoU
- DIoU
# 代码
python train.py --loss_category DIoU
- GIoU
# 代码
python train.py --loss_category GIoU
- EIoU
# 代码
python train.py --loss_category EIoU
- SIoU
# 代码
python train.py --loss_category SIoU
- NMS(默认)
# 代码
python val.py
- Merge-NMS
# 代码
python val.py --merge
- Soft-NMS
# 代码
python val.py --soft
具体不同注意力机制Paper以及结构图👉👉👉点击链接🔗
Attention Series🚀🚀🚀
- 🎈External Attention
- 🎈Self Attention
- 🎈Simplified Self Attention
- 🎈Squeeze-and-Excitation Attention
- 🎈SK Attention
- 🎈CBAM Attention
- 🎈BAM Attention
- 🎈ECA Attention
- 🎈DANet Attention
- 🎈Pyramid Split Attention (PSA)
- 🎈Efficient Multi-Head Self-Attention(EMSA)
- 🎈Shuffle Attention
- 🎈MUSE Attention
- 🎈SGE Attention
- 🎈A2 Attention
- 🎈AFT Attention
- 🎈Outlook Attention
- 🎈ViP Attention
- 🎈CoAtNet Attention
- 🎈HaloNet Attention
- 🎈Polarized Self-Attention
- 🎈CoTAttention
- 🎈Residual Attention
- 🎈S2 Attention
- 🎈GFNet Attention
- 🎈Triplet Attention
- 🎈Coordinate Attention
- 🎈MobileViT Attention
- 🎈ParNet Attention
- 🎈UFO Attention
- 🎈MobileViTv2 Attention
- SiLU
# SiLU activation https://arxiv.org/pdf/1606.08415.pdf
# 代码(./utils/activations.py文件内搜索🔍)
class SiLU(nn.Module):
...
- Hardswish
# Hard-SiLU activation
# 代码(./utils/activations.py文件内搜索🔍)
class Hardswish(nn.Module):
...
- Mish
# Mish activation https://github.com/digantamisra98/Mish
# 代码(./utils/activations.py文件内搜索🔍)
class Mish(nn.Module):
...
- MemoryEfficientMish
# Mish activation memory-efficient
# 代码(./utils/activations.py文件内搜索🔍)
class MemoryEfficientMish(nn.Module):
...
- FReLU
# FReLU activation https://arxiv.org/abs/2007.11824
# 代码(./utils/activations.py文件内搜索🔍)
class FReLU(nn.Module):
...
- AconC
r""" ACON activation (activate or not)
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
"""
# 代码(./utils/activations.py文件内搜索🔍)
class AconC(nn.Module):
...
- MetaAconC
r""" ACON activation (activate or not)
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
"""
# 代码(./utils/activations.py文件内搜索🔍)
class MetaAconC(nn.Module):
...
详细
以上网络模型结构图来自以下参考链接🔗 链接1 链接2 链接3 链接4 链接5 链接6 链接7 链接8
教程
- 训练自定义数据 🚀 推荐
- 获得最佳训练效果的技巧 ☘️ 推荐
- 使用 Weights & Biases 记录实验 🌟 新
- Roboflow:数据集、标签和主动学习 🌟 新
- 多GPU训练
- PyTorch Hub ⭐ 新
- TFLite, ONNX, CoreML, TensorRT 导出 🚀
- 测试时数据增强 (TTA)
- 模型集成
- 模型剪枝/稀疏性
- 超参数进化
- 带有冻结层的迁移学习 ⭐ 新
- YOLOv5架构概要 ⭐ 新
Expand
Expand
- The content of this site is only for sharing notes. If some content is infringing, please use issue to contact to delete it