Skip to content

TatsukiSerizawa/MachineLearningMethod

Repository files navigation

Machine Learning Method

ゴールデンウィークで機械学習手法を復習するレポジトリ
機械学習や関連技術の試験場

Target

  • それぞれの手法の特徴とメリット・デメリットについて把握する

  • 各手法について数式レベルで理解する

Study Method

Day 1 (29, April, Heisei)

  • Linear regression

Day 2 (30, April, Heisei)

  • Decision Tree

  • Random Forest

Day 3 (1, May, Reiwa)

  • Support Vector Machine (SVM)

Day 4 (20, November, Reiwa)

  • Convolutional Neural Network (CNN)

Day 5 (24, December, Reiwa)

Study Method (Plans)

Supervised Learning

Regression

  • Linear regression

Tree

  • Decision tree

  • Random forest

  • Gradient boosting tree

Bayes

  • Naive bayes

Neural Network

  • Perceptron

  • Convolutional Neural Network (CNN)

Other

  • K-Nearest Neighbor (KNN)

  • Support Vector Machine (SVM)

Unsupervised Learning

  • k-means

  • PCA

  • t-SNE

About

Review Repository for Machine Learning Methods

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published