|
| 1 | +""" |
| 2 | +A Segment Tree is a binary tree data structure used for efficiently answering |
| 3 | +range queries and updates on an array, such as sum, minimum, or maximum over |
| 4 | +a subrange. It offers O(log n) time complexity for both queries and updates, |
| 5 | +making it very efficient compared to a naive O(n) approach. |
| 6 | +
|
| 7 | +While building the tree takes O(n) time and the tree requires O(n) space, |
| 8 | +this preprocessing enables fast range queries that would otherwise be slow. |
| 9 | +Segment Trees are especially useful when the array is mutable and queries |
| 10 | +and updates are intermixed. |
| 11 | +
|
| 12 | +Time Complexity: |
| 13 | +- Build: O(n) |
| 14 | +- Query: O(log n) |
| 15 | +- Update: O(log n) |
| 16 | +
|
| 17 | +Example usage and doctests: |
| 18 | +
|
| 19 | +>>> data = [1, 2, 3, 4, 5] |
| 20 | +>>> st = SegmentTree(data) |
| 21 | +>>> st.query(1, 4) |
| 22 | +9 |
| 23 | +>>> st.update(2, 10) |
| 24 | +>>> st.query(1, 4) |
| 25 | +16 |
| 26 | +""" |
| 27 | + |
| 28 | + |
| 29 | +class SegmentTree: |
| 30 | + """Segment Tree for efficient range sum queries.""" |
| 31 | + |
| 32 | + def __init__(self, data: list[int]): |
| 33 | + """Initialize the segment tree with the input data. |
| 34 | +
|
| 35 | + Args: |
| 36 | + data (list[int]): List of integers to build the segment tree. |
| 37 | + """ |
| 38 | + self.n = len(data) |
| 39 | + self.tree = [0] * (2 * self.n) |
| 40 | + # Build the tree |
| 41 | + for i in range(self.n): |
| 42 | + self.tree[self.n + i] = data[i] |
| 43 | + for i in range(self.n - 1, 0, -1): |
| 44 | + self.tree[i] = self.tree[i << 1] + self.tree[i << 1 | 1] |
| 45 | + |
| 46 | + def update(self, index: int, value: int) -> None: |
| 47 | + """Update element at index with a new value. |
| 48 | +
|
| 49 | + Args: |
| 50 | + index (int): Index of the element to update. |
| 51 | + value (int): New value to set at the given index. |
| 52 | + """ |
| 53 | + if index < 0 or index >= self.n: |
| 54 | + raise ValueError("Index out of bounds") |
| 55 | + index += self.n |
| 56 | + self.tree[index] = value |
| 57 | + while index > 1: |
| 58 | + index >>= 1 |
| 59 | + self.tree[index] = self.tree[index << 1] + self.tree[index << 1 | 1] |
| 60 | + |
| 61 | + def query(self, left: int, right: int) -> int: |
| 62 | + """Compute the sum of elements in the interval [left, right). |
| 63 | +
|
| 64 | + Args: |
| 65 | + left (int): Left index (inclusive). |
| 66 | + right (int): Right index (exclusive). |
| 67 | +
|
| 68 | + Returns: |
| 69 | + int: Sum of elements from left to right-1. |
| 70 | +
|
| 71 | + Raises: |
| 72 | + ValueError: If indices are out of bounds or left >= right. |
| 73 | + """ |
| 74 | + if left < 0 or right > self.n or left >= right: |
| 75 | + raise ValueError("Invalid query range") |
| 76 | + res = 0 |
| 77 | + left += self.n |
| 78 | + right += self.n |
| 79 | + while left < right: |
| 80 | + if left & 1: |
| 81 | + res += self.tree[left] |
| 82 | + left += 1 |
| 83 | + if right & 1: |
| 84 | + right -= 1 |
| 85 | + res += self.tree[right] |
| 86 | + left >>= 1 |
| 87 | + right >>= 1 |
| 88 | + return res |
| 89 | + |
| 90 | + |
| 91 | +if __name__ == "__main__": |
| 92 | + import doctest |
| 93 | + |
| 94 | + data = [1, 2, 3, 4, 5] |
| 95 | + st = SegmentTree(data) |
| 96 | + print("Initial sum 1-4:", st.query(1, 4)) |
| 97 | + st.update(2, 10) |
| 98 | + print("Updated sum 1-4:", st.query(1, 4)) |
| 99 | + |
| 100 | + doctest.testmod() |
0 commit comments