Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor Binary Search #722

Merged
merged 4 commits into from
May 28, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
217 changes: 132 additions & 85 deletions src/searching/binary_search.rs
Original file line number Diff line number Diff line change
@@ -1,106 +1,153 @@
//! This module provides an implementation of a binary search algorithm that
//! works for both ascending and descending ordered arrays. The binary search
//! function returns the index of the target element if it is found, or `None`
//! if the target is not present in the array.

use std::cmp::Ordering;

/// Performs a binary search for a specified item within a sorted array.
///
/// This function can handle both ascending and descending ordered arrays. It
/// takes a reference to the item to search for and a slice of the array. If
/// the item is found, it returns the index of the item within the array. If
/// the item is not found, it returns `None`.
///
/// # Parameters
///
/// - `item`: A reference to the item to search for.
/// - `arr`: A slice of the sorted array in which to search.
///
/// # Returns
///
/// An `Option<usize>` which is:
/// - `Some(index)` if the item is found at the given index.
/// - `None` if the item is not found in the array.
pub fn binary_search<T: Ord>(item: &T, arr: &[T]) -> Option<usize> {
sozelfist marked this conversation as resolved.
Show resolved Hide resolved
let mut is_asc = true;
if arr.len() > 1 {
is_asc = arr[0] < arr[arr.len() - 1];
}
let is_asc = is_asc_arr(arr);

let mut left = 0;
let mut right = arr.len();

while left < right {
let mid = left + (right - left) / 2;

if is_asc {
match item.cmp(&arr[mid]) {
Ordering::Less => right = mid,
Ordering::Equal => return Some(mid),
Ordering::Greater => left = mid + 1,
}
} else {
match item.cmp(&arr[mid]) {
Ordering::Less => left = mid + 1,
Ordering::Equal => return Some(mid),
Ordering::Greater => right = mid,
}
if match_compare(item, arr, &mut left, &mut right, is_asc) {
return Some(left);
}
}

None
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn empty() {
let index = binary_search(&"a", &[]);
assert_eq!(index, None);
}

#[test]
fn one_item() {
let index = binary_search(&"a", &["a"]);
assert_eq!(index, Some(0));
}

#[test]
fn search_strings_asc() {
let index = binary_search(&"a", &["a", "b", "c", "d", "google", "zoo"]);
assert_eq!(index, Some(0));

let index = binary_search(&"google", &["a", "b", "c", "d", "google", "zoo"]);
assert_eq!(index, Some(4));
}

#[test]
fn search_strings_desc() {
let index = binary_search(&"a", &["zoo", "google", "d", "c", "b", "a"]);
assert_eq!(index, Some(5));

let index = binary_search(&"zoo", &["zoo", "google", "d", "c", "b", "a"]);
assert_eq!(index, Some(0));

let index = binary_search(&"google", &["zoo", "google", "d", "c", "b", "a"]);
assert_eq!(index, Some(1));
}

#[test]
fn search_ints_asc() {
let index = binary_search(&4, &[1, 2, 3, 4]);
assert_eq!(index, Some(3));

let index = binary_search(&3, &[1, 2, 3, 4]);
assert_eq!(index, Some(2));

let index = binary_search(&2, &[1, 2, 3, 4]);
assert_eq!(index, Some(1));

let index = binary_search(&1, &[1, 2, 3, 4]);
assert_eq!(index, Some(0));
/// Compares the item with the middle element of the current search range and
/// updates the search bounds accordingly. This function handles both ascending
/// and descending ordered arrays. It calculates the middle index of the
/// current search range and compares the item with the element at
/// this index. It then updates the search bounds (`left` and `right`) based on
/// the result of this comparison. If the item is found, it updates `left` to
/// the index of the found item and returns `true`.
///
/// # Parameters
///
/// - `item`: A reference to the item to search for.
/// - `arr`: A slice of the array in which to search.
/// - `left`: A mutable reference to the left bound of the search range.
/// - `right`: A mutable reference to the right bound of the search range.
/// - `is_asc`: A boolean indicating whether the array is sorted in ascending order.
///
/// # Returns
///
/// A `bool` indicating whether the item was found.
fn match_compare<T: Ord>(
item: &T,
arr: &[T],
left: &mut usize,
right: &mut usize,
is_asc: bool,
) -> bool {
let mid = *left + (*right - *left) / 2;
let cmp_result = item.cmp(&arr[mid]);

match (is_asc, cmp_result) {
(true, Ordering::Less) | (false, Ordering::Greater) => {
*right = mid;
}
(true, Ordering::Greater) | (false, Ordering::Less) => {
*left = mid + 1;
}
(_, Ordering::Equal) => {
*left = mid;
return true;
}
}

#[test]
fn search_ints_desc() {
let index = binary_search(&4, &[4, 3, 2, 1]);
assert_eq!(index, Some(0));
false
}

let index = binary_search(&3, &[4, 3, 2, 1]);
assert_eq!(index, Some(1));
/// Determines if the given array is sorted in ascending order.
///
/// This helper function checks if the first element of the array is less than the
/// last element, indicating an ascending order. It returns `false` if the array
/// has fewer than two elements.
///
/// # Parameters
///
/// - `arr`: A slice of the array to check.
///
/// # Returns
///
/// A `bool` indicating whether the array is sorted in ascending order.
fn is_asc_arr<T: Ord>(arr: &[T]) -> bool {
arr.len() > 1 && arr[0] < arr[arr.len() - 1]
}

let index = binary_search(&2, &[4, 3, 2, 1]);
assert_eq!(index, Some(2));
#[cfg(test)]
mod tests {
use super::*;

let index = binary_search(&1, &[4, 3, 2, 1]);
assert_eq!(index, Some(3));
macro_rules! test_cases {
($($name:ident: $test_case:expr,)*) => {
$(
#[test]
fn $name() {
let (item, arr, expected) = $test_case;
assert_eq!(binary_search(&item, arr), expected);
}
)*
};
}

#[test]
fn not_found() {
let index = binary_search(&5, &[1, 2, 3, 4]);
assert_eq!(index, None);

let index = binary_search(&5, &[4, 3, 2, 1]);
assert_eq!(index, None);
test_cases! {
empty: ("a", &[] as &[&str], None),
one_item_found: ("a", &["a"], Some(0)),
one_item_not_found: ("b", &["a"], None),
search_strings_asc_start: ("a", &["a", "b", "c", "d", "google", "zoo"], Some(0)),
search_strings_asc_middle: ("google", &["a", "b", "c", "d", "google", "zoo"], Some(4)),
search_strings_asc_last: ("zoo", &["a", "b", "c", "d", "google", "zoo"], Some(5)),
search_strings_asc_not_found: ("x", &["a", "b", "c", "d", "google", "zoo"], None),
search_strings_desc_start: ("zoo", &["zoo", "google", "d", "c", "b", "a"], Some(0)),
search_strings_desc_middle: ("google", &["zoo", "google", "d", "c", "b", "a"], Some(1)),
search_strings_desc_last: ("a", &["zoo", "google", "d", "c", "b", "a"], Some(5)),
search_strings_desc_not_found: ("x", &["zoo", "google", "d", "c", "b", "a"], None),
search_ints_asc_start: (1, &[1, 2, 3, 4], Some(0)),
search_ints_asc_middle: (3, &[1, 2, 3, 4], Some(2)),
search_ints_asc_end: (4, &[1, 2, 3, 4], Some(3)),
search_ints_asc_not_found: (5, &[1, 2, 3, 4], None),
search_ints_desc_start: (4, &[4, 3, 2, 1], Some(0)),
search_ints_desc_middle: (3, &[4, 3, 2, 1], Some(1)),
search_ints_desc_end: (1, &[4, 3, 2, 1], Some(3)),
search_ints_desc_not_found: (5, &[4, 3, 2, 1], None),
sozelfist marked this conversation as resolved.
Show resolved Hide resolved
with_gaps_0: (0, &[1, 3, 8, 11], None),
with_gaps_1: (1, &[1, 3, 8, 11], Some(0)),
with_gaps_2: (2, &[1, 3, 8, 11], None),
with_gaps_3: (3, &[1, 3, 8, 11], Some(1)),
with_gaps_4: (4, &[1, 3, 8, 10], None),
with_gaps_5: (5, &[1, 3, 8, 10], None),
with_gaps_6: (6, &[1, 3, 8, 10], None),
with_gaps_7: (7, &[1, 3, 8, 11], None),
with_gaps_8: (8, &[1, 3, 8, 11], Some(2)),
with_gaps_9: (9, &[1, 3, 8, 11], None),
with_gaps_10: (10, &[1, 3, 8, 11], None),
with_gaps_11: (11, &[1, 3, 8, 11], Some(3)),
with_gaps_12: (12, &[1, 3, 8, 11], None),
with_gaps_13: (13, &[1, 3, 8, 11], None),
}
}