-
Notifications
You must be signed in to change notification settings - Fork 31
/
algorithm.py
85 lines (68 loc) · 2.3 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/env python3
import argparse
import json
import sys
import numpy as np
import pandas as pd
from typing import List
from dataclasses import dataclass, asdict, field
from mscred.model import MSCRED
@dataclass
class CustomParameters:
windows: List[int] = field(default_factory=lambda: [10, 30, 60])
gap_time: int = 10
window_size: int = 5
batch_size: int = 32
learning_rate: float = 1e-3
epochs: int = 1
early_stopping_patience: int = 10
early_stopping_delta: float = 0.05
split: float = 0.8
test_batch_size: int = 256
random_state: int = 42
class AlgorithmArgs(argparse.Namespace):
@property
def ts(self) -> np.ndarray:
return self.df.iloc[:, 1:-1].values
@property
def df(self) -> pd.DataFrame:
return pd.read_csv(self.dataInput)
@staticmethod
def from_sys_args() -> 'AlgorithmArgs':
args: dict = json.loads(sys.argv[1])
custom_parameter_keys = dir(CustomParameters())
filtered_parameters = dict(
filter(lambda x: x[0] in custom_parameter_keys, args.get("customParameters", {}).items()))
args["customParameters"] = CustomParameters(**filtered_parameters)
return AlgorithmArgs(**args)
def train(args: AlgorithmArgs):
ts = args.ts
params = asdict(args.customParameters)
del params["random_state"]
mscred = MSCRED(n_dimensions=ts.shape[1], **params)
mscred.fit(ts, args)
mscred.save(args)
def execute(args: AlgorithmArgs):
ts = args.ts
mscred = MSCRED.load(args)
anomaly_scores = mscred.detect(ts)
anomaly_scores.tofile(args.dataOutput, sep="\n")
def set_random_state(config: AlgorithmArgs) -> None:
seed = config.customParameters.random_state
import random, torch
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Wrong number of arguments specified; expected a single json-string!")
exit(1)
args = AlgorithmArgs.from_sys_args()
print(f"AlgorithmArgs: {args}")
set_random_state(args)
if args.executionType == "train":
train(args)
elif args.executionType == "execute":
execute(args)
else:
raise ValueError(f"Unknown execution type '{args.executionType}'; expected either 'train' or 'execute'!")