Skip to content

Latest commit

 

History

History
95 lines (67 loc) · 6.34 KB

README.md

File metadata and controls

95 lines (67 loc) · 6.34 KB

Code for Reproduction of Experimentation in A Procedural World Generation Framework for Systematic Evaluation of Continual Learning

This repository contains the code for reproduction of the experiments in our paper:

Timm Hess, Martin Mundt, Iuliia Pliushch, Visvanathan Ramesh: "A Procedural World Generation Framework for Systematic Evaluation of Continual Learning" https://arxiv.org/abs/2106.02585

This project builds on the code-basis for generative open-set classifying denoising variational auto-encoder (OCDVAE) and the Avalanche Continual Learning Libraray.

Requirements

  • Python 3 (3.8.5)
  • PyTorch 1.8.1 & torchvision 0.9.1
  • Cython >= 0.17 (for libmr) & libmr 0.1.9 (for open set recognition)
  • avalanche 0.0.1
  • tqdm 4.61.0 (for progress bars)
  • scipy 1.6.3 & librosa 0.6.3 (for creation of AudioMNIST spectrograms)

and for visualization:

  • Matplotlib 3.4.1
  • Seaborn 0.11.1
  • Tensorboard 2.5.0

Specific Experiments

In the following the specific command lines for the reproduction of experimentation as conducted in the paper are provided.

Datasets

The image-patch datasets used for the experimentation are available here.

Naive Continual Leanring

Incremental Classes

python train_OCDVAE.py -a DCNNNoVAE --no-vae --dataset IncrementalClassificationSet --incremental-data --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --patch-size 64 --epochs 60 --batch-size 64  --num-base-tasks 1 --num-increment-tasks 1 --save_path_root <path>

Incremental Lighting / Weather

python train_OCDVAE.py -a DCNNNoVAE --no-vae --dataset IncrementalInstanceSet --incremental-instance --incremental-data --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --patch-size 64 --epochs 60 --batch-size 64  --num-base-tasks 1 --num-increment-tasks 1 --save_path_root <path>

Avalanche

python train_avalanche.py --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --num_epochs 60 --batch_size 64 --sequence_order 0 1 2 3 --task_order 0 1 2 3 --cl_strategy Naive --tb_log_dir <path>

Upper Bound

Incremental Classes

python3 train_OCDVAE.py -a DCNNNoVAE --no-vae --dataset IncrementalClassificationSet --incremental-data --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --patch-size 64 --epochs 60 --batch-size 64  --num-base-tasks 1 --num-increment-tasks 1 --train-incremental-upper-bound --load-task-order 0,1,2,3,4

Incremental Lighting / Weather

python train_OCDVAE.py -a DCNNNoVAE --no-vae --dataset IncrementalInstanceSet --incremental-instance --incremental-data --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --patch-size 64 --epochs 60 --batch-size 64 --num-base-tasks 0 --num-increment-tasks --train-incremental-upper-bound

OCDVAE

Incremental Classes

python3 train_OCDVAE.py -a DCNN --dataset IncrementalClassificationSet --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --patch-size 64 --epochs 120 --batch-size 64 --incremental-data --num-base-tasks 1 --num-increment-tasks 1 --openset-generative-replay --save_path_root <path>

Incremental Lighting / Weather

python3 train_OCDVAE.py -a DCNN --dataset IncrementalInstanceSet --incremental-instance --incremental-data --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --patch-size 64 --epochs 120 --batch-size 64 --num-base-tasks 0 --num-increment-tasks 1 --openset-generative-replay --load-task-order 4,3,2,1,0

LwF

Incremental Classes

python3 train_OCDVAE.py -a DCNNNoVAE --no-vae --dataset IncrementalClassificationSet --incremental-data --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --patch-size 64 --epochs 60 --batch-size 64 --num-base-tasks 1 --num-increment-tasks 1 --load-task-order 0,1,2,3 --use-lwf --lmda 0.5

Incremental Lighting / Weather

python3 train_OCDVAE.py -a DCNNNoVAE --no-vae --dataset IncrementalInstanceSet --incremental-data --incremental-instance --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --patch-size 64 --epochs 60 --batch-size 64 --num-base-tasks 0 --num-increment-tasks 1 --load-task-order 0,1,2,3,4 --full-conf-mat --use-lwf --lmda 0.5

Avalanche

python train_avalanche.py --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --num_epochs 60 --batch_size 64 --sequence_order 0 1 2 3 --task_order 0 1 2 3 --cl_strategy LwF --tb_log_dir <path>

SI

Incremental Classes

python3 train_OCDVAE.py -a DCNNNoVAE --no-vae --dataset IncrementalClassificationSet --incremental-data --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --patch-size 64 --epochs 60 --batch-size 64 --num-base-tasks 1 --num-increment-tasks 1 --load-task-order 0,1,2,3 --use-si --lmda 1.0	

Incremental Lighting / Weather

python3 train_OCDVAE.py -a DCNNNoVAE --no-vae --dataset IncrementalInstanceSet --incremental-data --incremental-instance --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --patch-size 64 --epochs 60 --batch-size 64 --num-base-tasks 0 --num-increment-tasks 1 --load-task-order 0,1,2,3,4 --full-conf-mat --use-si --lmda 1.0

Avalanche

python train_avalanche.py --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --num_epochs 60 --batch_size 64 --sequence_order 0 1 2 3 --task_order 0 1 2 3 --cl_strategy SI --tb_log_dir <path>

EWC (Avalanche Only)

Incremental Classes / Lighting / Weather

python train_avalanche.py --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --num_epochs 60 --batch_size 64 --sequence_order 0 1 2 3 --task_order 0 1 2 3 --cl_strategy EWC --tb_log_dir <path>

GEM (Avalanche Only)

Incremental Classes / Lighting / Weather

python train_avalanche.py --train_path_to_root <Train_ImagePatch_Dataset> --val_path_to_root <Val_ImagePatch_Dataset> --num_epochs 60 --batch_size 64 --sequence_order 0 1 2 3 --task_order 0 1 2 3 --cl_strategy GEM --tb_log_dir <path>