-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathsoftmax_loss_layer.cu
146 lines (136 loc) · 5.44 KB
/
softmax_loss_layer.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#include <algorithm>
#include <cfloat>
#include <vector>
#include <glog/logging.h>
#include "caffe/layer.hpp"
#include "caffe/layers/softmax_loss_layer.hpp"
#include "caffe/util/math_functions.hpp"
namespace caffe {
template <typename Dtype>
__global__ void SoftmaxLossForwardGPU(const int nthreads,
const Dtype* prob_data, const Dtype* label,
const bool weight_by_label_freqs, const float* label_counts,
Dtype* loss, const int num, const int dim, const int spatial_dim,
const bool has_ignore_label_, const int ignore_label_,
Dtype* counts) {
CUDA_KERNEL_LOOP(index, nthreads) {
const int n = index / spatial_dim;
const int s = index % spatial_dim;
const int label_value = static_cast<int>(label[n * spatial_dim + s]);
if (has_ignore_label_ && label_value == ignore_label_) {
loss[index] = 0;
counts[index] = 0;
} else {
loss[index] = -log(max(prob_data[n * dim + label_value * spatial_dim + s],
Dtype(FLT_MIN)));
if (weight_by_label_freqs) {
loss[index] *= static_cast<Dtype>(label_counts[label_value]);
}
counts[index] = 1;
}
}
}
template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Forward_gpu(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
const Dtype* prob_data = prob_.gpu_data();
const Dtype* label = bottom[1]->gpu_data();
const int dim = prob_.count() / outer_num_;
const int nthreads = outer_num_ * inner_num_;
// Since this memory is not used for anything until it is overwritten
// on the backward pass, we use it here to avoid having to allocate new GPU
// memory to accumulate intermediate results in the kernel.
Dtype* loss_data = bottom[0]->mutable_gpu_diff();
// Similarly, this memory is never used elsewhere, and thus we can use it
// to avoid having to allocate additional GPU memory.
Dtype* counts = prob_.mutable_gpu_diff();
const float* label_count_data =
weight_by_label_freqs_ ? label_counts_.gpu_data() : NULL;
// NOLINT_NEXT_LINE(whitespace/operators)
SoftmaxLossForwardGPU<Dtype><<<CAFFE_GET_BLOCKS(nthreads),
CAFFE_CUDA_NUM_THREADS>>>(nthreads, prob_data, label,
weight_by_label_freqs_, label_count_data , loss_data,
outer_num_, dim, inner_num_,
has_ignore_label_, ignore_label_, counts);
Dtype loss;
caffe_gpu_asum(nthreads, loss_data, &loss);
if (normalize_) {
Dtype count;
caffe_gpu_asum(nthreads, counts, &count);
loss /= count;
} else {
loss /= outer_num_;
}
top[0]->mutable_cpu_data()[0] = loss;
if (top.size() == 2) {
top[1]->ShareData(prob_);
}
}
template <typename Dtype>
__global__ void SoftmaxLossBackwardGPU(const int nthreads, const Dtype* top,
const Dtype* label, const bool weight_by_label_freqs,
const float* label_counts, Dtype* bottom_diff,
const int num, const int dim, const int spatial_dim,
const bool has_ignore_label_, const int ignore_label_,
Dtype* counts) {
const int channels = dim / spatial_dim;
CUDA_KERNEL_LOOP(index, nthreads) {
const int n = index / spatial_dim;
const int s = index % spatial_dim;
const int label_value = static_cast<int>(label[n * spatial_dim + s]);
if (has_ignore_label_ && label_value == ignore_label_) {
for (int c = 0; c < channels; ++c) {
bottom_diff[n * dim + c * spatial_dim + s] = 0;
}
counts[index] = 0;
} else {
const int idx = n * dim + label_value * spatial_dim + s;
bottom_diff[idx] -= 1;
if (weight_by_label_freqs) {
for (int c = 0; c < channels; ++c) {
bottom_diff[n * dim + c * spatial_dim + s] *= static_cast<Dtype>(label_counts[label_value]);
}
}
counts[index] = 1;
}
}
}
template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[1]) {
LOG(FATAL) << this->type()
<< " Layer cannot backpropagate to label inputs.";
}
if (propagate_down[0]) {
Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
const Dtype* prob_data = prob_.gpu_data();
const Dtype* top_data = top[0]->gpu_data();
caffe_gpu_memcpy(prob_.count() * sizeof(Dtype), prob_data, bottom_diff);
const Dtype* label = bottom[1]->gpu_data();
const int dim = prob_.count() / outer_num_;
const int nthreads = outer_num_ * inner_num_;
// Since this memory is never used for anything else,
// we use to to avoid allocating new GPU memory.
Dtype* counts = prob_.mutable_gpu_diff();
const float* label_count_data =
weight_by_label_freqs_ ? label_counts_.gpu_data() : NULL;
// NOLINT_NEXT_LINE(whitespace/operators)
SoftmaxLossBackwardGPU<Dtype><<<CAFFE_GET_BLOCKS(nthreads),
CAFFE_CUDA_NUM_THREADS>>>(nthreads, top_data, label,
weight_by_label_freqs_, label_count_data, bottom_diff,
outer_num_, dim, inner_num_, has_ignore_label_,
ignore_label_, counts);
const Dtype loss_weight = top[0]->cpu_diff()[0];
if (normalize_) {
Dtype count;
caffe_gpu_asum(nthreads, counts, &count);
caffe_gpu_scal(prob_.count(), loss_weight / count, bottom_diff);
} else {
caffe_gpu_scal(prob_.count(), loss_weight / outer_num_, bottom_diff);
}
}
}
INSTANTIATE_LAYER_GPU_FUNCS(SoftmaxWithLossLayer);
} // namespace caffe