Validity fingerprint sensor driver.
- python-validity
On Ubuntu system:
$ sudo apt remove fprintd
$ sudo add-apt-repository ppa:uunicorn/open-fprintd
$ sudo apt-get update
$ sudo apt install open-fprintd fprintd-clients python3-validity
...wait a bit...
$ fprintd-enroll
On Arch Linux (Or Arch Linux based system, not including Artix)
$ yay -S python-validity
(Press Enter twice when prompted)
$ fprintd-enroll
If fprintd-enroll
returns with list_devices failed:
, you can check
the logs of the python3-validity
daemon using $ sudo systemctl status python3-validity
.
If it's not running, you can enable and/or start it by substituting status
with enable
or start
.
It systemctl status python3-validity
complains about errors on startup, you may need to factory-reset the fingerprint chip. Do that like so:
$ sudo systemctl stop python3-validity
$ sudo validity-sensors-firmware
$ sudo python3 /usr/share/python-validity/playground/factory-reset.py
# At some of the above points you may get a 'device busy' error,
# depending on how systemctl plays along. Kill offending processes if
# necessary, or re-run the systemctl stop python3-validity command,
# in case it has automatically been restarted, or or kill other
# offending processes.
$ sudo systemctl start python3-validity
$ fprintd-enroll
Enable open-fprintd-resume and open-fprintd-suspend services:
$ sudo systemctl enable open-fprintd-resume open-fprintd-suspend
For even more error procedures, check this Arch comment thread or this python-validity bug comment thread.
To enable fingerprint login, if it doesn't come automatically, run
$ sudo pam-auth-update
and use the space-bar to enable fingerprint authentication. The change will take effect immediately. At this point, the fingerprint will be tried first, and only if that fails or times out will you see a password prompt. Take note of the led-stripe above the fingerprint sensor to see whether it is active.
The above mentioned command $ sudo pam-auth-update
simply makes a small modification to /etc/pam.d/common-auth:
# In /etc/pam.d/common-auth, the following line is added, and the next line changed.
# The end result (apart from other things that may be in the file) is this:
auth [success=2 default=ignore] pam_fprintd.so max_tries=1 timeout=10 # debug
auth [success=1 default=ignore] pam_unix.so nullok_secure try_first_pass
Note: This section is likely only relevant if you will be dual booting.
To be able to use the same set of fingerprints for Windows and Linux, you first
need to extract the Windows user IDs (known as SIDs). To do this, start Windows,
start cmd.exe
and run wmic useraccount get name,sid
. This will provide a
list of all users and the corresponding SIDs.
You can then create a mapping from the Linux user names (as written in the
first :
-separated field of /etc/passwd
). This mapping is defined in
/etc/python-validity/dbus-service.yaml
. For example:
user_to_sid:
"myusername": "S-1-5-21-1234567890-1234567890-1234567890-1001"
"someotheruser": "S-1-5-21-1234567890-1234567890-1234567890-1003"
This package contains a set of scripts you can use to do a low-level debugging of the sensor protocol.
Here is a couple of examples of how you can use them.
Before using the scripts, make sure you've disabled the dbus service shipped with this package.
All examples assume that you are in /usr/share/python-validity/playground/
directory and your device is already paired.
Before talking to a device you will need to open it and start a new TLS session
$ python3
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from prototype import *
>>> open9x()
>>>
Note: 0xf5 == WINBIO_FINGER_UNSPECIFIED_POS_01 (see ms docs)
>>> db.dump_all()
8: User S-1-5-21-111111111-1111111111-1111111111-1000 with 1 fingers:
9: f5 (WINBIO_FINGER_UNSPECIFIED_POS_01)
>>> enroll(sid_from_string('S-1-5-21-394619333-3876782012-1672975908-3333'), 0xf5)
Waiting for a finger...
Progress: 14 % done
Progress: 28 % done
Progress: 42 % done
Progress: 57 % done
Progress: 71 % done
Progress: 85 % done
Progress: 100 % done
All done
11
>>> db.dump_all()
8: User S-1-5-21-111111111-1111111111-1111111111-1000 with 1 fingers:
9: f5 (WINBIO_FINGER_UNSPECIFIED_POS_01)
10: User S-1-5-21-394619333-3876782012-1672975908-3333 with 1 fingers:
11: f5 (WINBIO_FINGER_UNSPECIFIED_POS_01)
>>>
>>> db.dump_all()
8: User S-1-5-21-111111111-1111111111-1111111111-1000 with 1 fingers:
9: f5 (WINBIO_FINGER_UNSPECIFIED_POS_01)
10: User S-1-5-21-394619333-3876782012-1672975908-3333 with 1 fingers:
11: f5 (WINBIO_FINGER_UNSPECIFIED_POS_01)
>>> db.del_record(11)
>>> db.dump_all()
8: User S-1-5-21-111111111-1111111111-1111111111-1000 with 1 fingers:
9: f5 (WINBIO_FINGER_UNSPECIFIED_POS_01)
10: User S-1-5-21-394619333-3876782012-1672975908-3333 with 0 fingers:
>>>
>>> identify()
Recognised finger f5 (WINBIO_FINGER_UNSPECIFIED_POS_01) from user S-1-5-21-111111111-1111111111-1111111111-1000
Template hash: 36bc1fe077e59a3090c816fcf2798c30a85d8a8fbe000ead5c6a946c3bacef7b
When started, DBus service will first try to initialize the device, then it will try to register itself with the
open-fprintd service. If open-fprintd
is not available it will wait for it
to come up.
To start DBus service from the sources (useful for debugging):
PYTHONPATH=. ./dbus_service/dbus-service
If you are curious you can enable tracing to see what flows in and out of device before and after encryption
>>> tls.trace_enabled=True
>>> usb.trace_enabled=True
>>> logging.basicConfig(level=logging.DEBUG)
>>> db.dump_all()
>tls> 17: 4b00000b0053746757696e64736f7200
>cmd> 1703030050c00a7ff1cf76e90f168141b4bc519ca9598eacb575ff01b7552a3707be8506b246d5272cb119e7b8b3eccd991cb7d8387245953ff1da62cebfb07fae7e47b9b536fb1a82185cc9399d30625ee3c1451f
<cmd< 1703030050b7a4a39e256bbe5a2589a6fbeec86057bead96f0b79ab6657dd9e851efaccddf9cd0108865aa98c510a1f8cd9b881b3166db553e5b4330c437f09daccbe261b259019774466ddb0d7f97fa67b6337329
<tls< 17: 0000030002000b00000008004c000a004c0053746757696e64736f7200
>tls> 17: 4a080000000000
>cmd> 1703030040ef982e5d6c403ff636c44cd53e7d0f98c21f67ff3b5b80f53555e4547028bd4d17cf5b0539ac0489238f1f066b8ba849120380cf979088d6c63249c873868c95
<cmd< 1703030090f16f4ed027f50103d5cf274a59323e5f25e084e21e4d42d4eab23abc867504ef80a700c775f03c0fafabee2e373fbf551d46e53ca957b86c53853a913e11c8cab98df41afc86af883b4e1b817024b212dbcdf1057a3bcdbc474381c5a5c37162167ff395e8102902c4e0d00b9b4931f0fa986ec3257c6bf2a5b55ea0b5349c035c20ed583522ac7ef9048e97a589a25e
<tls< 17: 00000800010000004c000900f5000300780b030000001c000000010500000000000515000000c76b9f06c7353a42c7353a42e803000000000000000000000000000000000000000000000000000000000000000000000000000000000000
>tls> 17: 4a0a0000000000
>cmd> 1703030040b522c55b73480e0d71a322abf8b65d97c9b55e9930206c463f998886cda4410d1b00ab41ec5b213d2ac18bf3bf61ce817446f27d643f99aba5a1d4cb80d18461
<cmd< 170303009061cef46670a21ca87043f1f4d55153eb46a19757de767d4ddbee736e2a775af63850a89ebe814b7e578979f1fb8a1c2133e0c6fa5b468cff9c731ef3f178b33334bdf64c03903dc2d95e9a16c656f1f8d06fa3431c3971607fec56f104ec7d4e73518705a289fac53fe54ddf33b30dad2b8c1fac67b7decf8c7f86dd843414e7f056a2ea8366611e5094c5491d5ade46
<tls< 17: 00000a00000000004c00030000001c000000010500000000000515000000c5698517bcff12e72496b763050d000000000000000000000000000000000000000000000000000000000000000000000000000000000000
8: User S-1-5-21-111111111-1111111111-1111111111-1000 with 1 fingers:
9: f5 (WINBIO_FINGER_UNSPECIFIED_POS_01)
10: User S-1-5-21-394619333-3876782012-1672975908-3333 with 0 fingers:
>>>