Encapsulates existing YOLO-based backend codebase to use YOLO model on USB camera or Raspberry Pi camera input.
$ git clone --recursive https://github.com/ctchuang/yolo3-camera.git
Do not forget
--resursive
option.
- Backend: Keras + Tensorflow
- Platform:
- Mac OS X
- Ubuntu Linux
- Remark:
- Running on Raspbian hits Bus Error in TensorFlow. I didn't debug it.
- AI Model:
yolov3-tiny
- AI Hardware:
- Pure CPU
- GPU (haven't tested)
- Setup keras_yolo3 backend
- Backend: Intel Movidius SDK
- Platform:
- Ubuntu Linux
- Raspbian (Raspberry Pi 3)
- Remark:
- Movidius NCS SDK doesn't support Mac OS.
- AI Model:
yolov2-tiny-voc
- AI Hardware:
- Intel Movidius NCS USB stick.
- Setup YoloV2NCS backend
Attach a USB camera or Raspberry Pi Camera.
# Use Keras backend
$ python3 run.py -b 0 [-c camera_id]
# Use YoloV2NCS
$ python3 run.py -b 1 [-c camera_id]
# Get help
$ python3 run.py -h
You should see live yolo result like below:
It also works on Raspberry Pi 3 with Pi camera.
Press ESC key to exit.
For USB camera:
$ ls -l /dev/video*
For example, use 1
as camera id for /dev/video1
.
For Raspberry Pi camera, use pi
as camera id.
$ python3 test_camera.py -c [camera_id]
When using USB camera + Movidius NCS on Raspberry Pi 3 Model B may have flakiness because RPi 3 Model B does not get enough DC power input. Adding a powered USB 3.0 hub can fix this.
RPi3 Model B+ can get more DC power input, and it's possible to use USB camera and Movidius NCS stick without extra AC-powered USB hub.
- Reading from Raspberry Pi camera to OpenCV is very slow. (<2FPS)