The goal of raodn is to ...
You can install raodn from github with:
# install.packages("devtools")
devtools::install_github("mdsumner/raodn")
This is a basic example that gets some Argo data.
library(raodn)
## read Argo data from AODN
example("read_aodn_csv")
#>
#> rd_dn_> d <- read_aodn_csv(collection_url)
#> Parsed with column specification:
#> cols(
#> .default = col_double(),
#> FID = col_character(),
#> url = col_character(),
#> size = col_integer(),
#> data_centre = col_character(),
#> platform_number = col_integer(),
#> cycle_number = col_integer(),
#> direction = col_character(),
#> data_state_indicator = col_character(),
#> data_mode = col_character(),
#> juld = col_datetime(format = ""),
#> juld_qc = col_integer(),
#> juld_location = col_datetime(format = ""),
#> position_qc = col_integer(),
#> position = col_character(),
#> oxygen_sensor = col_character(),
#> project_name = col_character(),
#> level_no = col_integer(),
#> pres_qc = col_integer(),
#> pres_adjusted_qc = col_integer(),
#> temp_qc = col_integer()
#> # ... with 9 more columns
#> )
#> See spec(...) for full column specifications.
#>
#> rd_dn_> #library(ggplot2)
#> rd_dn_> # ggplot(d[d$pres < 100, ]) + aes(longitude, latitude, col = psal) + geom_point()
#> rd_dn_> #ggplot(d) + aes(psal, -pres, col = temp) +
#> rd_dn_> # geom_point() +
#> rd_dn_> # facet_wrap(~platform_number)
#> rd_dn_>
#> rd_dn_>
#> rd_dn_>
library(ggplot2)
ggplot(d[d$pres < 100, ]) + aes(longitude, latitude, col = psal) + geom_point()
#> Warning: Removed 38848 rows containing missing values (geom_point).
ggplot(d) + aes(psal, -pres, col = temp) +
geom_point() +
facet_wrap(~platform_number)
#> Warning: Removed 51564 rows containing missing values (geom_point).