Le Zhang, Ryutaro Tanno, Kevin Bronik, Chen Jin, Parashkev Nachev, Frederik Barkhof, Olga Ciccarelli, and Daniel C. Alexander, Learning to Segment When Experts Disagree, International Conference on Medical image computing and Computer-Assisted Intervention (MICCAI). Springer, Cham, 2020.
Click here to see full pdf file: Link to PDF
First, user needs to install Anaconda https://www.anaconda.com/
Then
- conda env create -f conda_environment_Training_Inference.yml
and
- conda activate traintestenv
finally
- python Training_Inference_GUI.py
After lunching the graphical user interface, user will need to provide necessary information to start training/testing as follows:
First
- conda activate traintestenv
then for training
- python segmentation_network_Training_without_GUI.py [or annotation_network_Training_without_GUI.py]
for testing
- python segmentation_network_Inference_without_GUI.py [or annotation_network_Inference_without_GUI.py]
Examples of Training and Testing subjects can be found in: https://github.com/UCLBrain/MSLS/tree/master/examples (which will allow users to quickly and easily train and test the program)
..................................................................................................................................................................