-
Notifications
You must be signed in to change notification settings - Fork 0
/
GW007_Minntac_InitCond_chem.m
315 lines (284 loc) · 12.5 KB
/
GW007_Minntac_InitCond_chem.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
function [mob_eq_comp, mob_eq_ic_z, mob_eq_extra_z, min_eq_comp, min_eq_ic_z, ...
catex_comp, catex_ic_z, surf_comp, surf_ic_z, surf_par, surf_cpl, surf_calc_type] = ...
Minntac_InitCond_chem(phrq_sim_dir, phrq_exe, use_file_databas, por, tempC)
% Uses the following functions:
% - Alk2DIC() (only needed if data is for alkalinity)
% Converts alkalinity to total C(4)
% - generate_ic_PHREEQC_f_051915a()
% Generates equilibrated ic using PHREEQC
% - go_PHREEQC2_3()
% Called by generate_ic_PHREEQC_f_051915a(), runs PHREEQC
sim_dir = 'C:\Hydro_Modeling\pht3d_dir\';
phrq_sim_dir = sim_dir;
phrq_exe = 'C:\Hydro_Modeling\phreeqc.exe';
use_file_databas = 'C:\Hydro_Modeling\pht3d_dir\pht3d_datab2.dat';
tempC = 10.0;
por = 0.39;
% % **** To run as script: comment out 1st line for function, uncomment below
% % block
% SC_dir = '/home/gcng/workspace/matlab_files/SecondCreek';
% addpath(SC_dir);
% sim_dir = '/home/gcng/workspace/ModelRuns_scratch/PHT3D_projects/SecondCreek/test1_1D/';
% phrq_sim_dir = sim_dir;
%
% % you may not need this
% matlab_dir = '/home/gcng/workspace/matlab_files/my_toolbox/PHT3D_functions';
% addpath(matlab_dir);
% % ----------------
% *** CUSTOMIZE: **********************************************************
% This script uses PHREEQC to prepare (equilibrate and charge-balance)
% different aqueous solutions for use in initial and boundary conditions.
% Different aq solutions could correspond to different parts of the domain,
% e.g. Cell 2 water, bulk domain groundwater, and recharge water. These
% different aq solutions will be called 'zones'.
%
% Use this section to specify the number of zones and to comment on what
% each zone represents.
nzones = 3;
% ** comment here to describe 'zones'
% zone 1: cell 2 water
% zone 2: domain ic water
% zone 3: recharge water
% *************************************************************************
% -- SET MODEL CHEMISTRY: initial trial values
% (Units -- aq: mol/L_w, user-defined immob (e.g. bacteria, napl): mol/L_w,
% minerals (and gases): mol/L_v, exchangers and surfaces: mol/L_v)
% - mobile equil components
% (ic from PHREEQC batch run)
n_mob_eq_max = 50;
mob_eq_comp = cell(n_mob_eq_max,1);
mob_eq_obs_z = zeros(nzones, n_mob_eq_max);
convert_obs2model = zeros(1, n_mob_eq_max); % convert obs units to mol/L
mob_eq_extra_z = cell(nzones, n_mob_eq_max);
ii = 0;
ii=ii+1; mob_eq_comp{ii} = 'C(4)'; % ***********************************
Ka1 = 10^-6.3; Ka2 = 10^-10.3; KH = 10^-14;
pH = 6.92;
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; %Alk2DIC(3*5.19/1000, pH, Ka1, Ka2, KH); % meq/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; %Alk2DIC(3*5.19/1000, pH, Ka1, Ka2, KH); % meq/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; %Alk2DIC(3*5.19/1000, pH, Ka1, Ka2, KH); % meq/L
convert_obs2model(ii) = 1;
ii=ii+1; mob_eq_comp{ii} = 'Ca'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
convert_obs2model(ii) = 1/1000/40.08;
ii=ii+1; mob_eq_comp{ii} = 'Cl'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 141.557; % mg/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
convert_obs2model(ii) = 1/1000/35.453;
% mob_eq_extra_z{zz,ii} = 'charge';
ii=ii+1; mob_eq_comp{ii} = 'Fe(2)'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % ug Fe/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % ug Fe/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % ug Fe/L
convert_obs2model(ii) = 1/1e6/55.847;
ii=ii+1; mob_eq_comp{ii} = 'K'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
convert_obs2model(ii) = 1/1e3/39.102;
ii=ii+1; mob_eq_comp{ii} = 'Mg'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
convert_obs2model(ii) = 1/1e3/24.312;
ii=ii+1; mob_eq_comp{ii} = 'Mn(2)'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % ug/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % ug/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % ug/L
convert_obs2model(ii) = 1/1e6/54.938;
ii=ii+1; mob_eq_comp{ii} = 'Na'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 6.89; % mg/L 'charge' denotes will balance with anions
mob_eq_extra_z{zz,ii} = 'charge';
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
mob_eq_extra_z{zz,ii} = 'charge';
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
mob_eq_extra_z{zz,ii} = 'charge';
convert_obs2model(ii) = 1/1e3/22.9898;
ii=ii+1; mob_eq_comp{ii} = 'O(0)'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 100; % mg/L DO
zz = zz + 1; mob_eq_obs_z(zz,ii) = 10; % mg/L DO
zz = zz + 1; mob_eq_obs_z(zz,ii) = 10; % mg/L DO
convert_obs2model(ii) = 1/1e3/16.0;
ii=ii+1; mob_eq_comp{ii} = 'S(-2)'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg S/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg S/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg S/L
convert_obs2model(ii) = 1/1e3/32.064;
ii=ii+1; mob_eq_comp{ii} = 'S(6)'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 918.172; % mg SO4/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg SO4/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg SO4/L
convert_obs2model(ii) = 1/1e3/(32.064+4*16.0);
ii=ii+1; mob_eq_comp{ii} = 'Si'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
convert_obs2model(ii) = 1/1e3/28.0843;
ii=ii+1; mob_eq_comp{ii} = 'C(-4)'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
zz = zz + 1; mob_eq_obs_z(zz,ii) = 0; % mg/L
convert_obs2model(ii) = 1/1e3/16.0;
ii=ii+1; mob_eq_comp{ii} = 'pH'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 6.92; %
zz = zz + 1; mob_eq_obs_z(zz,ii) = 6.92; %
zz = zz + 1; mob_eq_obs_z(zz,ii) = 6.92; %
convert_obs2model(ii) = 1;
ii=ii+1; mob_eq_comp{ii} = 'pe'; % ***********************************
zz = 0;
zz = zz + 1; mob_eq_obs_z(zz,ii) = 14; %
zz = zz + 1; mob_eq_obs_z(zz,ii) = 14; %
zz = zz + 1; mob_eq_obs_z(zz,ii) = 14; %
convert_obs2model(ii) = 1;
n_mob_eq = ii;
mob_eq_comp = mob_eq_comp(1:n_mob_eq);
mob_eq_obs_z = mob_eq_obs_z(:,1:n_mob_eq);
mob_eq_extra_z = mob_eq_extra_z(:,1:n_mob_eq);
convert_obs2model = convert_obs2model(1:n_mob_eq);
mob_eq_obs_z = mob_eq_obs_z .* repmat(convert_obs2model, nzones, 1);
% - mineral eq components
% (only allowed for porewater solution)
n_min_eq_max = 10;
min_eq_comp = cell(n_min_eq_max,1);
min_eq_ic_z = zeros(nzones,n_min_eq_max);
ii = 0;
% ii=ii+1; min_eq_comp{ii} = 'Fe(OH)3(a)'; % ***********************************
% min_eq_ic_z(zz,ii) = 10; % arbitrary conc
% ii=ii+1; min_eq_comp{ii} = 'Gibbsite'; % ***********************************
% min_eq_ic_z(zz,ii) = 30e-6*rho_b; % (mol/Lv)
% ii=ii+1; min_eq_comp{ii} = 'Goethite'; % ***********************************
% min_eq_ic_z(zz,ii) = 50e-6*rho_b; % (mol/Lv)
% ii=ii+1; min_eq_comp{ii} = 'Pyrolusite'; % ***********************************
% min_eq_ic_z(zz,ii) = .25e-6*rho_b; %
% ii=ii+1; min_eq_comp{ii} = 'Siderite'; % ***********************************
% min_eq_ic_z(zz,ii) = 10; % arbitrary conc
ii=ii+1; min_eq_comp{ii} = 'FeS(ppt)'; % ***********************************
zz = 0;
zz = zz + 1; min_eq_ic_z(zz,ii) = 0; % 0 mineral in Cell 2 water
zz = zz + 1; min_eq_ic_z(zz,ii) = 10; % arbitrary conc
zz = zz + 1; min_eq_ic_z(zz,ii) = 10; % arbitrary conc
% ii=ii+1; min_eq_comp{ii} = 'Rhodochrosite'; % ***********************************
% ii=ii+1; min_eq_comp{ii} = 'Vivianite'; % ***********************************
n_min_eq = ii;
min_eq_comp = min_eq_comp(1:n_min_eq);
min_eq_ic_z = min_eq_ic_z(:,1:n_min_eq);
% - catex components (catex_exch is exchanger site)
n_catex_exch_max = 10;
catex_exch_comp = cell(n_catex_exch_max,1);
catex_exch_ic_z = zeros(nzones, n_catex_exch_max);
ii = 0;
n_catex_exch = ii;
catex_exch_comp = catex_exch_comp(1:n_catex_exch);
catex_exch_ic_z = catex_exch_ic_z(:,1:n_catex_exch);
% - catex components (catex is exchanger sorbed compound)
% (ic from PHREEQC batch run)
n_catex_max = 10;
catex_comp = cell(n_catex_max,1);
ii = 0;
n_catex = ii;
catex_comp = catex_comp(1:n_catex);
% - surface complexation components
% **** WARNING: not set up for surfaces w/
% multiple sites (would need to enter only 1 surf_calc_type
% per surface in _ph file)
n_surf_max = 10;
surf_comp = cell(n_surf_max,1);
% surf_ic: number of sites [mol/Lv] if not coupled to phase or reactant,
% (number of sites per mol x porosity) [mol/mol] if coupled
surf_ic_z = zeros(nzones,n_surf_max);
% surf_par(1,ii): SurfArea ([m2/g] if not coupled to phase or reactant,
% [mol/m2] if coupled to phase or reactant)
% surf_par(2,ii): mass ([g/L] if not coupled to phase or reactant,
% include but ignored if coupled to phase or reactant)
surf_par = zeros(2,n_surf_max);
% surf_cpl{1,ii}: Empty if not coupled to phase or reactant
% surf_cpl{1,ii}: Name of pure phase or kin reactant coupled to
% surf_cpl{2,ii}: 'equilibrium_phase' to couple to pure phase, or
% 'kinetic_reactant' to couple to kinetic reactant
surf_cpl = cell(2,n_surf_max);
surf_calc_type = '';
ii = 0;
n_surf = ii;
surf_comp = surf_comp(1:n_surf);
surf_ic_z = surf_ic_z(:,1:n_surf);
surf_par = surf_par(:,1:n_surf);
% (done setting model chemical components)
% - select output list
phrq_sel_outlist.total = [mob_eq_comp(~strncmp('p',mob_eq_comp,1))];
phrq_sel_outlist.mol = catex_comp;
phrq_sel_outlist.equilphase = min_eq_comp;
phrq_sel_outlist.si = []; phrq_sel_outlist.gas = [];
% -- Get initial conditions w/ PHREEQC
% % (re-)run PHREEQC to equilibrate ic conc for each zone
% fprintf('Have not finished code of fl_init_phrq=1! Need to do for each zone! Exiting...\n');
% return
mob_eq.name = mob_eq_comp; mob_eq.extra_z = mob_eq_extra_z;
if n_catex == 0 % not cation exchange components
catex = [];
else
% assume exchanger is same for all zones
catex.name = catex_exch_comp;
catex.cec = catex_exch_ic / por;
end
fl_force_redox = 1; % force redox equilibration, not just charge balance
% -- Set file names
phrq_infil = fullfile(phrq_sim_dir, 'batch_phrq.dat');
phrq_outfil = fullfile(phrq_sim_dir, 'batch_phrq.out');
phrq_tblfil = fullfile(phrq_sim_dir, 'batch_phrq.tbl');
phrq_sel_outfil = fullfile(phrq_sim_dir, 'batch_phrq.sel');
% set database file (must be in sim_dir with file name 'pht3d_datab.dat')
file_databas = fullfile(phrq_sim_dir, 'pht3d_datab.dat');
copyfile(use_file_databas, file_databas);
% -- Check to make sure you don't over-write any output files
% - go to simulation dir (check to make sure not over-writing, no current programs running)
if ~exist(phrq_sim_dir, 'dir')
mkdir(phrq_sim_dir);
end
%if exist([phrq_sel_outfil, '1'], 'file')
% fprintf('phrq_sim_dir has .sel file(s)! Could be job running or unsaved job there. Exiting...\n');
% fprintf('(phrq_sim_dir %s) \n', phrq_sim_dir);
% mob_eq_comp = []; mob_eq_ic_z = []; mob_eq_extra_z = []; min_eq_comp = []; min_eq_ic_z= [];
% catex_comp = [];catex_ic_z = [];surf_comp = [];surf_ic_z = [];surf_par = [];surf_cpl = [];surf_calc_type = [];
% return
%end
% -- Run PHREEQC to equilibrate and charge-balance aq solutions for each zone
units = 'mol/kgw';
mob_eq_ic_z = zeros(nzones, n_mob_eq);
catex_ic_z = nan(nzones, n_catex);
for zz = 1:nzones % loop through different zones
fprintf('\n--- Zone %d ---', zz);
mob_eq.ic = mob_eq_obs_z(zz,:);
mob_eq.extra = mob_eq_extra_z(zz,:);
phase.name = min_eq_comp; phase.ic = min_eq_ic_z(zz,:);
phase.si = zeros(n_min_eq,1);
[mob_eq_ic_z(zz,:), b] = generate_ic_PHREEQC_f_062215a_2(...
phrq_exe, phrq_infil, phrq_outfil, file_databas, phrq_sel_outfil, phrq_sel_outlist, ...
por, tempC, units, ...
mob_eq, phase, catex, ...
mob_eq_comp, catex_comp, fl_force_redox, ...
phrq_tblfil);
if ~isempty(b)
catex_ic_z(zz,:) = b;
end
movefile(phrq_infil, [phrq_infil, num2str(zz)]);
movefile(phrq_outfil, [phrq_outfil, num2str(zz)]);
movefile(phrq_sel_outfil, [phrq_sel_outfil, num2str(zz)]);
movefile(phrq_tblfil, [phrq_tblfil, num2str(zz)]);
end