You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+25-19
Original file line number
Diff line number
Diff line change
@@ -12,10 +12,12 @@
12
12
13
13
## What's New?
14
14
15
+
- New activation function (sin, cos, tan, GeLU) with optimizable bounds (α-CROWN) and [branch and bound support](https://files.sri.inf.ethz.ch/wfvml23/papers/paper_24.pdf) for non-ReLU activation functions. We achieve significant improvements on verifying neural networks with non-ReLU activation functions such as Transformer and LSTM networks. (09/2023)
16
+
-[α,β-CROWN](https://github.com/Verified-Intelligence/alpha-beta-CROWN.git) ([alpha-beta-CROWN](https://github.com/Verified-Intelligence/alpha-beta-CROWN.git)) (using `auto_LiRPA` as its core library) **won**[VNN-COMP 2023](https://sites.google.com/view/vnn2023). (08/2023)
15
17
- Bound computation for higher-order computational graphs to support bounding Jacobian, Jacobian-vector products, and [local Lipschitz constants](https://arxiv.org/abs/2210.07394). (11/2022)
16
-
- Our neural network verification tool [α,β-CROWN](https://github.com/huanzhang12/alpha-beta-CROWN.git) ([alpha-beta-CROWN](https://github.com/huanzhang12/alpha-beta-CROWN.git)) (using `auto_LiRPA` as its core library) **won**[VNN-COMP 2022](https://sites.google.com/view/vnn2022). Our library supports the large CIFAR100, TinyImageNet and ImageNet models in VNN-COMP 2022. (09/2022)
18
+
- Our neural network verification tool [α,β-CROWN](https://github.com/Verified-Intelligence/alpha-beta-CROWN.git) ([alpha-beta-CROWN](https://github.com/Verified-Intelligence/alpha-beta-CROWN.git)) (using `auto_LiRPA` as its core library) **won**[VNN-COMP 2022](https://sites.google.com/view/vnn2022). Our library supports the large CIFAR100, TinyImageNet and ImageNet models in VNN-COMP 2022. (09/2022)
17
19
- Implementation of **general cutting planes** ([GCP-CROWN](https://arxiv.org/pdf/2208.05740.pdf)), support of more activation functions and improved performance and scalability. (09/2022)
18
-
- Our neural network verification tool [α,β-CROWN](https://github.com/huanzhang12/alpha-beta-CROWN.git) ([alpha-beta-CROWN](https://github.com/huanzhang12/alpha-beta-CROWN.git)) **won**[VNN-COMP 2021](https://sites.google.com/view/vnn2021)**with the highest total score**, outperforming 11 SOTA verifiers. α,β-CROWN uses the `auto_LiRPA` library as its core bound computation library. (09/2021)
20
+
- Our neural network verification tool [α,β-CROWN](https://github.com/Verified-Intelligence/alpha-beta-CROWN.git) ([alpha-beta-CROWN](https://github.com/Verified-Intelligence/alpha-beta-CROWN.git)) **won**[VNN-COMP 2021](https://sites.google.com/view/vnn2021)**with the highest total score**, outperforming 11 SOTA verifiers. α,β-CROWN uses the `auto_LiRPA` library as its core bound computation library. (09/2021)
19
21
-[Optimized CROWN/LiRPA](https://arxiv.org/pdf/2011.13824.pdf) bound (α-CROWN) for ReLU, **sigmoid**, **tanh**, and **maxpool** activation functions, which can significantly outperform regular CROWN bounds. See [simple_verification.py](examples/vision/simple_verification.py#L59) for an example. (07/31/2021)
20
22
- Handle split constraints for ReLU neurons ([β-CROWN](https://arxiv.org/pdf/2103.06624.pdf)) for complete verifiers. (07/31/2021)
21
23
- A memory efficient GPU implementation of backward (CROWN) bounds for
@@ -46,12 +48,12 @@ Our library supports the following algorithms:
* Backward mode LiRPA bound propagation with optimized bounds ([α-CROWN](https://arxiv.org/pdf/2011.13824.pdf))
49
-
* Backward mode LiRPA bound propagation with split constraints ([β-CROWN](https://arxiv.org/pdf/2103.06624.pdf))
51
+
* Backward mode LiRPA bound propagation with split constraints ([β-CROWN](https://arxiv.org/pdf/2103.06624.pdf)) for ReLU, and ([Shi et al. 2023](https://files.sri.inf.ethz.ch/wfvml23/papers/paper_24.pdf)) for general nonlinear functions
50
52
* Generalized backward mode LiRPA bound propagation with general cutting plane constraints ([GCP-CROWN](https://arxiv.org/pdf/2208.05740.pdf))
51
53
* Forward mode LiRPA bound propagation ([Xu et al., 2020](https://arxiv.org/pdf/2002.12920))
52
54
* Forward mode LiRPA bound propagation with optimized bounds (similar to [α-CROWN](https://arxiv.org/pdf/2011.13824.pdf))
*[**Computing local Lipschitz constants**](https://github.com/shizhouxing/Local-Lipschitz-Constants)
168
170
@@ -177,7 +179,7 @@ For more documentations, please refer to:
177
179
178
180
## Publications
179
181
180
-
Please kindly cite our papers if you use the `auto_LiRPA` library. Full [BibTeX entries](doc/examples.md#bibtex-entries) can be found [here](doc/examples.md#bibtex-entries).
182
+
Please kindly cite our papers if you use the `auto_LiRPA` library. Full [BibTeX entries](doc/src/examples.md#bibtex-entries) can be found [here](doc/src/examples.md#bibtex-entries).
181
183
182
184
The general LiRPA based bound propagation algorithm was originally proposed in our paper:
183
185
@@ -207,26 +209,30 @@ Certified robust training using `auto_LiRPA` is improved to allow much shorter w
207
209
NeurIPS 2021.
208
210
Zhouxing Shi\*, Yihan Wang\*, Huan Zhang, Jinfeng Yi and Cho-Jui Hsieh (\* Equal contribution).
209
211
210
-
## Developers and Copyright
212
+
Branch and bound for non-ReLU and general activation functions:
213
+
*[Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound](https://files.sri.inf.ethz.ch/wfvml23/papers/paper_24.pdf).
* Christopher Brix (brix@cs.rwth-aachen.de), RWTH Aachen University
221
225
* Kaidi Xu (kx46@drexel.edu), Drexel University
226
+
* Xiangru Zhong (xiangruzh0915@gmail.com), Sun Yat-sen University
227
+
* Qirui Jin (qiruijin@umich.edu), University of Michigan
228
+
* Zhuolin Yang (zhuolin5@illinois.edu), UIUC
229
+
* Zhuowen Yuan (realzhuowen@gmail.com), UIUC
222
230
223
-
Contributors:
224
-
* Yihan Wang (yihanwang@ucla.edu), UCLA
231
+
Past developers:
225
232
* Shiqi Wang (sw3215@columbia.edu), Columbia University
226
-
*Linyi Li (linyi2@illinois.edu), UIUC
233
+
*Yihan Wang (yihanwang@ucla.edu), UCLA
227
234
* Jinqi (Kathryn) Chen (jinqic@cs.cmu.edu), CMU
228
-
* Zhuolin Yang (zhuolin5@illinois.edu), UIUC
229
235
230
-
We thank the [commits](https://github.com/KaidiXu/auto_LiRPA/commits) and [pull requests](https://github.com/KaidiXu/auto_LiRPA/pulls) from community contributors.
236
+
We thank the [commits](https://github.com/Verified-Intelligence/auto_LiRPA/commits) and [pull requests](https://github.com/Verified-Intelligence/auto_LiRPA/pulls) from community contributors.
231
237
232
238
Our library is released under the BSD 3-Clause license.
0 commit comments