Skip to content

ViniciusMikuni/PCT_HEP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Point Cloud Transformers applied to Collider physics.

This is the main repository for the PCT HEP paper. The implementation uses a modified version of PCT to suit the High Energy Physics needs.

Requirements

Tensorflow 1.14

h5py

Preparing the datasets

First, download the data for the application you want to test:

Top quark dataset

Quark/Gluon dataset

Multiclassification dataset

To convert these files into the format required for the training, use the following scripts:

#Top quark dataset
python prepare_top.py --sample[val.h5/train.h5/test.h5] --out OUT_FILE_NAME

#Quark gluon dataset
python prepare_qg.py --out OUT_FILE_NAME

#Multiclassification dataset
python prepare_multi.py [--make_eval] --out OUT_FILE_NAME

For additional options, just run the scripts with the --help flag To verify/change the name of the input files containing different datasets see the training script train_transformer.py

Training

cd classification
python train_transformer.py  --sample [qg/multi/top] [--simple] --log_dir OUTPUT_LOG
  • --sample: training dataset to use
  • --simple: activate this flag to change to simple PCT training

A logs folder will be created with the training results under the main directory names OUTPUT_LOG. To evaluate the training use:

python evaluate_transformer.py --sample [qg/multi/top] [--simple]  --model_path OUTPUT_LOG --batch 1000 --name OUTPUT_NAME 

Citation

If this implementation was useful for your work,, please cite the reference paper:

@article{Mikuni:2021pou, author = "Mikuni, Vinicius and Canelli, Florencia", title = "{Point cloud transformers applied to collider physics}", eprint = "2102.05073", archivePrefix = "arXiv", primaryClass = "physics.data-an", doi = "10.1088/2632-2153/ac07f6", journal = "Mach. Learn. Sci. Tech.", volume = "2", number = "3", pages = "035027", year = "2021" }

License

MIT License

Acknowledgements

A modified version of PCT is used and implemented using the basic framework from PointNet.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages