Skip to content

Implementation of desicion procedure for validity of many-valued modal logics

License

Notifications You must be signed in to change notification settings

WeAreDevo/Many-Valued-Modal-Tableau

Repository files navigation

Many-Valued Modal Tableau (mvmt)

Description

This repo contains the implementation of a desicion procedure for checking the validity of many-valued modal logic formulas. It is based on expansions of Fitting's work in [1] and [2]. The proof of the correctness and termination of the procedure forms part of my master's dissertation which is in progress and will be linked after it has been submitted.

Installation

pip install mvmt

Getting Started

If you just want to use the package, pip install mvmt and use the modules provided. See the colab notebook for example usages. Open Demo In Colab

If you would like to edit and run the source code directly, see the For Developers section.

Function Documentation

This section describes the useful functions provided by the package.

utils.construct_heyting_algebra

Description

A useful wrapper function for creating a algebra.HeytingAlgebra object from a user supplied json specification of a Heyting algebra. See below for the convention used to specify algebras in a json form.

Parameters

  • file_path (str, optional): File path to json file containing a specification of a Heyting algebra.
  • python_dict (dict, optional): Python dict giving the json specification of a Heyting algebra. Default is None.

At least one of the arguments must be given. The specification should have the following format:

{
    "elements": ["<t1>","<t2>",...,"<tn>"],
    "order": {"<t1>": ["<t1_1>",...,"<t1_k1>"], "<t2>": ["<t2_1>",...,"<t2_k2>"],...,"<tn>": ["<tn_1>",...,"<tn_kn">]},
    "meet": {
            "<t1>": {"<t1>": "<m1_1>", "<t2>": "<m1_2>", ..., "<tn>": "<m1_n>"},
            "<t2>": {"<t1>": "<m2_1>", "<t2>": "<m2_2>", ..., "<tn>": "<m2_n>"},
            .
            .
            .
            "<tn>": {"<t1>": "<mn_1>", "<t2>": "<mn_2>", ..., "<tn>": "<mn_n>"},
        },
    "join": {
            "<t1>": {"<t1>": "<j1_1>", "<t2>": "<j1_2>", ..., "<tn>": "<j1_n>"},
            "<t2>": {"<t1>": "<j2_1>", "<t2>": "<j2_2>", ..., "<tn>": "<j2_n>"},
            .
            .
            .
            "<tn>": {"<t1>": "<jn_1>", "<t2>": "<jn_2>", ..., "<tn>": "<jn_n>"},
        }
}

Where each angle bracket string in the above should be replaced with a string denoting a truth value. Such a string must match the regex [a-o0-9]\d*. That is, it should be a string of decimal digits, or a letter between a and o (inclusive) followed by a string of decimal digits.

If we assume the json is intended to represent a heyting algebra $\mathcal{H}=(H,\land,\lor,0,1, \leq)$, and $I$ is the mapping from the strings denoting truth values to the actual truth values in $H$, then the json should be interpreted as follows:

  • $a \in H$ iff $a=I$("<ti>") for some "<ti>" in elements.
  • "<ti>" is in order["<tk>"] iff $I$("<tk>") $\leq I$("<ti>")
  • meet["<ti>"]["<tk>"]=="<mi_k>" iff $I$("<mi_k>") $= I$("<ti>") $\land I$("<tk>")
  • join["<ti>"]["<tk>"]=="<ji_k>" iff $I$("<ji_k>") $= I$("<ti>") $\lor I$("<tk>")

For example, a specification of the three-valued Heyting algebra $({0,\frac{1}{2},1}, \land, \lor, 0,1,\leq)$ with $I(\texttt{"0"})=0, I(\texttt{"a"})=\frac{1}{2}, I(\texttt{"1"})=1$ is given by:

{
    "elements": ["0","a","1"],
    "order": {
        "0": ["0","a","1"],
        "a": ["a","1"],
        "1": ["1"]
    },
    "meet": {
        "0": {"0": "0","a": "0","1": "0"},
        "a": {"0": "0","a": "a","1": "a"},
        "1": {"0": "0","a": "a","1": "1"}
    },
    "join": {
        "0": {"0": "0","a": "a","1": "1"},
        "a": {"0": "a","a": "a","1": "1"},
        "1": {"0": "1","a": "1","1": "1"}
    }
}

Note:

Only one of the order, meet or join fields needs to be specified and the other two can be left out of the json. If at least one of these is specified, the others can be uniquely determined. See the example code.

Returns

(algebra.HeytingAlgebra) A algebra.HeytingAlgebra object storing the algebra represented by the inputed specification.

Example

from mvmt import algebra, utils

# Specification of a four-valued Heyting algebra
spec = {
    "elements": ["0","a","b","1"],
    "order": {
      "0": ["0","a","b","1"], 
      "a": ["a","1"], 
      "b": ["b","1"], 
      "1": ["1"]}
}

# Example usage
H: algebra.HeytingAlgebra = utils.construct_heyting_algebra(python_dict=spec)
print(H.meet(algebra.TruthValue("a"),algebra.TruthValue("b")))
# Output
0

syntax.parse_expression

Description

Produces the syntax parse tree of a modal formula.

Parameters

  • expression (str, required): A modal formula.

expression must belong to the language generated by the grammar

expression ::= expression & expression
           | expression | expression
           | expression -> expression
           | [] expression
           | <> expression
           | (expression)
           | VAR
           | VALUE

VAR is a terminal symbol matching the regex [p-z]\d*, denoting a propositional variable.

VALUE is a terminal symbol matching the regex [a-o0-9]\d*. It denotes a truth value from the algebra, and as such it must be the same as one of the strings given in elements of the algebra specification.

Returns

(syntax.AST_Node) The root node of the parse tree.

Example

from mvmt import syntax

# Example usage
parse_tree = syntax.parse_expression("((<>(p -> 0) -> 0) -> []p)")
print(parse_tree.proper_subformulas[1].val)
# Output
[]

tableau.isValid

Description

Given a modal formuala $\varphi$ and Heyting algebra $\mathcal{H}$, checks if $\varphi$ is valid in the class of all $\mathcal{H}$-frames1.

Under the hood, it calls tableau.construct_tableau to construct a prefixed tableau for $\varphi$ and then returns True iff the constructed tableau is closed. tableau.construct_tableau is essentially the crux of this package.

Parameters

  • phi (str, required): The modal formula $\varphi$, with syntax as described in the parameters section of syntax.parse_expression.
  • H (algebra.HeytingAlgebra, required) The Heyting algebra $\mathcal{H}$.

Returns

  • (boolean) True if $\varphi$ is valid in the class of all $\mathcal{H}$-frames and False otherwise.
  • (tableau.Tableau) The tableau constructed and used to determine validity.

Example

from tableau import isValid

# Example usage
valid, tab = tableau.isValid("[]p -> p", H)
print(valid)
# Output
False

tableau.construct_counter_model

Description

Given a modal formuala $\varphi$ and Heyting algebra $\mathcal{H}$, if possible produce an $\mathcal{H}-model$ in which $\varphi$ is is not globally true. The model is read off of an open tableau for $\varphi$.

Parameters

  • phi (str, required): The modal formula $\varphi$, with syntax as described in the parameters section of syntax.parse_expression.
  • H (algebra.HeytingAlgebra, required) The Heyting algebra $\mathcal{H}$.
  • tableau (tableau.Tableau, optional) A tableau for $\varphi$. This is just used to prevent duplicate computations if the required tableau was already produced by isValid.

Returns

  • (algebra.HeytingAlgebra) $\mathcal{H}$
  • (tuple[set[str], dict[TruthValue, dict[TruthValue, TruthValue]], dict[str, dict[str, TruthValue]]]) The constructed counter $\mathcal{H}$-model.

Example

from tableau import construct_counter_model

# Example usage
M = tableau.construct_counter_model("[]p -> p", H, tab)
print(M[1][1])
# Output
{'A': {'A': '0'}}

tableau.visualize_model

Description

Produces a matplotlib visualizing a model returned by tableau.construct_counter_model as a labeled weighted directed graph.

Parameters

  • M (tuple[set[str], dict[TruthValue, dict[TruthValue, TruthValue]], dict[str, dict[str, TruthValue]]]): An $\mathcal{H}$-model.

Returns

None

For Developers

To run the code from source, follow these steps.

  • Clone this repo.
git clone https://github.com/WeAreDevo/Many-Valued-Modal-Tableau.git
cd Many-Valued-Modal-Tableau
  • Create a virtual enironment containing the required dependencies and activate it using either conda
conda env create -f environment.yml
conda activate mvmt

or using virtualenv

pip install virtualenv
virtualenv mvmt
source mvmt/bin/activate
pip install -r requirements.txt
  • You can now edit the source code and run it locally. For example, run main.py:
python main.py "<expression>" --algebra filename.json --print_tableau --display_model

<expression> is the propositional modal formula you wish to check is valid. filename.json should be the name of a file stored in algebra_specs that contains a json specification of a Heyting algebra. The --print_tableau flag enables printing the constructed tableau to the terminal, and the --display_model flag enables displaying a counter model (if it exists) in a seperate window.

E.g.

python main.py "[]p->p" --algebra three_valued.json --print_tableau --display_model

Note

<expression> should only contain well formed combinations of strings denoting:

  • propositional variables, which must match the regex [p-z]\d* (i.e. begin with a letter between "p" and "z", followed by a string of zero or more decimal digits)
  • a truth value from the specified algebra (see configurations below)
  • a connective such as "&", "|", "->", "[]", "<>" (These corrrespond respectively to the syntactic objects $\land, \lor, \supset, \Box, \Diamond$ as presented in [2])
  • Matching parentheses "(",")".

If some matching parentheses are not present, the usual order of precedence for propositional formulas is assumed.

References

[1] Fitting, M. (1983). Prefixed Tableau Systems. In: Proof Methods for Modal and Intuitionistic Logics. Synthese Library, vol 169. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2794-5_9

[2] Fitting, M. (1995). Tableaus for Many-Valued Modal Logic. Studia Logica: An International Journal for Symbolic Logic, 55(1), 63–87. http://www.jstor.org/stable/20015807

[3] Fitting, M. (1992). Many-valued modal logics II. Fundamenta Informaticae, 17, 55-73. https://doi.org/10.3233/FI-1992-171-205

TODO

  • Check if specified finite algebra is in fact a bounded distributive lattice (and hence Heyting algebra)
  • Allow choice of stricter clsses of frames

Footnotes

  1. See [3] for appropriate definitions.

About

Implementation of desicion procedure for validity of many-valued modal logics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published