Implementation for CODA: Counting Objects via Scale-aware Adversarial Adaption
* data
* dataset folders
* exp
* experiments logs
* model
* %dataset name%.yml: dataset configurations
* %dataset name%_adv.yml: dataset configurations for adversarial training and testing
* src/lib
* dataset
* DataPrepare.py: preparing the train/val/test list for training/testing
* mall/shanghaitech/trancos.py: dataset redefinition
* network
* cn.py: counting network definition
* discriminator.py: discriminator definition
* opt
* train.py: training operation for counting network
* train_adv.py: training operation for adversarial training
* lr_policy.py: lr policy
* utils
* image_opt.py: image visualization
* Logger.py: tensorboard logger
* tools
* demo.py
* demo_adv.py
* train_net.py
* train_net_adv.py
python tools/train_net.py
python tools/train_net_adv.py