src/script.sh
:
Step 1: generate the 4D signal spe4D
via fft based time-frequency analysis, output spe4D_min_max
values and img_mean_std
values
python data_process.py --slc_root ../data/slc_data/ \ # single look complex data dir
--spe4D_root ../data/slc_spe4D_fft_12/ \ # 4D TF signal dir
--win 0.5 # hamming window size (propotion of slc_img, 0.5 or 0.25)
Step 2: train cae model
python train_cae.py --data_file ../data/slc_cae_train_3.txt ../data/slc_cae_val_3.txt \
--data_root ../data/slc_spe4D_fft_12/ ../data/slc_spe4D_fft_12/ \
--catename2label ../data/slc_catename2label_cate8.txt \
--save_model_path ../model/slc_cae_12_ \
--pretrained_model ../model/slc_spexy_cae_3.pth \
--spe4D_min_max 0.0011597341927439826 10.628257178154184 \
--device 0
Step 3: generate spatially aligned frequency features spe3D
using cae model
python mapping_r4_r3.py --data_txt ../data/slc_cate8_all.txt \
--save_dir ../data/slc_spe4D_fft_12_spe3D/ \ # spe3D features
--spe_dir ../data/slc_spe4D_fft_12/ \
--pretrained_model ../model/slc_spexy_cae_3.pth \
--catefile ../data/slc_catename2label_cate8.txt \
--spe4D_min_max 0.0011597341927439826 10.628257178154184 \
--batchsize 2
Step 4: get spe3D_max
and img_feat_max
for feature normalization
python data_process.py --spe3D_root ../data/slc_spe4D_fft_12_spe3D/
python get_img_feat_max.py --img_root ../data/slc_data/ \
--data_file ../data/slc_train_3.txt \
--img_mean_std 0.29982 0.07479776 \
--catefile ../data/slc_catename2label_cate8.txt \
--cate_num 8 \
--device 0
Step 5: train deep network 3
python train_joint.py --img_root ../data/slc_data/ ../data/slc_data/ \
--spe_root ../data/slc_spe4D_fft_12_spe3D/ ../data/slc_spe4D_fft_12_spe3D/ \
--data_file ../data/slc_train_3.txt ../data/slc_val_3.txt \
--spe3D_max 0.18485471606254578 \
--img_feat_max 5.859713554382324 \
--img_mean_std 0.29982 0.07479776 \
--catefile ../data/slc_catename2label_cate8.txt \
--img_model ../model/tsx.pth \
--save_model_path ../model/slc_joint_ \
--epoch_num 100 \
--cate_num 8 \
--device 0
@article{dsn2020,
title = {Deep SAR-Net: Learning objects from signals},
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
volume = {161},
pages = {179-193},
year = {2020},
issn = {0924-2716},
author = {Z. Huang and M. Datcu and Z. Pan and B. Lei},
}