Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting with α-Power Maximization for Domain Adaptation, IJCV, 2024". [Official Version]
This is the extended version of the conference paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting with α-Power Maximization for Partial Domain Adaptation. NeurIPS, 2021". The extended version is more stable and more effective.
We have extended our method to open-set domain adaptation (OSDA), universal domain adaptation (UniDA), and test-time adaptation (TTA). Please refer to them.
python==3.9.12
torch==2.0.1
torchaudio==2.0.2
torchvision==0.15.2
numpy==1.25.2
cvxpy==1.3.2
tqdm==4.66.1
Pillow==10.0.0
scikit-learn==1.3.0
torch_ema==0.3
Download the datasets of
VisDA-2017
DomainNet
Office-Home
Office
ImageNet
Caltech-256
and put them into the folder "./data/" and modify the path of images in each '.txt' under the folder './data/'. Note the full list of ImageNet (imagenet.txt) is too big. Please download it here and put it into './data/imagenet_caltech/'.
VisDA-2017: train (synthetic), validation (real) ==> 0,1
DomainNet: clipart, painting, real, sketch ==> 0,1,2,3
Office-Home: art, clipart, product, real_world ==> 0,1,2,3
Office: amazon, dslr, webcam ==> 0,1,2
ImageNet-Caltech: imagenet, caltech ==> 0,1
VisDA-2017:
python main.py --dset visda-2017 --s 0 --t 1
DomainNet:
python main.py --dset domainnet --s 0 --t 1
Office-Home:
python main.py --dset office_home --s 0 --t 1
Office:
python main.py --dset office --s 0 --t 1
ImageNet-Caltech:
python main.py --dset imagenet_caltech --s 0 --t 1
We run the code on a single Tesla V-100 GPU. The results are as follows.
Office:
seed | A2D | A2W | D2A | D2W | W2A | W2D | Avg |
---|---|---|---|---|---|---|---|
2019 | 99.4 | 99.3 | 96.7 | 100.0 | 96.8 | 100.0 | 98.7 |
2021 | 100.0 | 99.7 | 96.4 | 100.0 | 96.6 | 100.0 | 98.8 |
2023 | 99.4 | 99.3 | 96.6 | 99.7 | 96.9 | 100.0 | 98.7 |
Avg | 99.6 | 99.4 | 96.6 | 99.9 | 96.8 | 100.0 | 98.7 |
Office-Home:
seed | A2C | A2P | A2R | C2A | C2P | C2R | P2A | P2C | P2R | R2A | R2C | R2P | Avg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 67.9 | 90.1 | 92.8 | 78.4 | 81.2 | 85.0 | 80.0 | 67.5 | 89.5 | 87.3 | 72.5 | 89.2 | 81.8 |
2021 | 67.4 | 85.7 | 90.8 | 76.2 | 85.8 | 88.5 | 81.5 | 71.0 | 88.8 | 85.3 | 69.2 | 88.9 | 81.6 |
2023 | 69.5 | 87.7 | 93.0 | 78.8 | 86.8 | 85.4 | 81.7 | 69.1 | 90.2 | 86.1 | 68.2 | 89.2 | 82.1 |
Avg | 68.3 | 87.8 | 92.2 | 77.8 | 84.6 | 86.3 | 81.1 | 69.2 | 89.5 | 86.2 | 70.0 | 89.1 | 81.8 |
VisDA-2017:
seed | 2019 | 2021 | 2023 | Avg |
---|---|---|---|---|
S2R | 92.2 | 93.9 | 93.6 | 93.2 |
ImageNet-Caltech:
seed | I2C | C2I | Avg |
---|---|---|---|
2019 | 84.3 | 87.1 | 85.7 |
2021 | 84.6 | 87.0 | 85.8 |
2023 | 85.0 | 87.2 | 86.1 |
Avg | 84.6 | 87.1 | 85.9 |
DomainNet:
seed | C2P | C2R | C2S | P2C | P2R | P2S | R2C | R2P | R2S | S2C | S2P | S2R | Avg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 65.3 | 77.0 | 66.5 | 78.3 | 84.3 | 81.9 | 86.7 | 77.9 | 78.5 | 66.8 | 63.8 | 70.9 | 74.8 |
2021 | 69.1 | 81.0 | 65.9 | 77.4 | 84.4 | 82.2 | 86.5 | 78.1 | 77.7 | 60.1 | 65.7 | 72.5 | 75.1 |
2023 | 69.2 | 81.4 | 66.6 | 79.4 | 83.7 | 81.5 | 86.2 | 78.0 | 79.6 | 60.7 | 65.0 | 71.8 | 75.3 |
Avg | 67.9 | 79.8 | 66.3 | 78.4 | 84.1 | 81.9 | 86.5 | 78.0 | 78.6 | 62.5 | 64.8 | 71.7 | 75.0 |
https://github.com/thuml/CDAN
https://github.com/tim-learn/BA3US
https://github.com/XJTU-XGU/RSDA
If you have any problem, feel free to contect xianggu@stu.xjtu.edu.cn.