Valerio Pampanoni, mailto: valerio.pampanoni@uniroma1.it
(Institutional), valerio.pampanoni@pm.me
(Personal)
This is a fork of the jgomezdans/prosail Python bindings to the PROSPECT [1] and SAIL [2] leaf and canopy reflectance models. In addition to the features provided by the original code, I have ported over functions of Huemmrich's GeoSail model [3, 4], which exploits Jasinski's geometric model [5] to represent discontinuous vegetation canopies. At the moment, the geocone
and geocily
functions are available to model cone-shaped and square cylinder-shaped trees respectively, but feel free to open a PR and implement more shapes.
The default spectrum supported by this module falls between 400 and 2500 nm, with a spacing of 1 nm.
The bindings implement the following models:
- PROSPECT: versions 5 [6] and D [7]. Flexibility to add/modify leaf absorption profiles.
- SAIL: FourSAIL [8] version. The thermal extension of the model is also implemented, although this hasn't been widely tested.
- GEO: GEO part of Huemmrich's GeoSail code.
- Simple Lambertian soil reflectance model
Furthermore, I have completely re-written the parameter intervals, which were wrong in the original README, and refer you to paragraphs 3.1.1, 3.1.2 and 3.1.3 of my PhD thesis for a detailed explanation of the meaning of each PROSPECT-D, 4SAIL and GEO variable respectively. The values are mostly sourced from [12], but you can find similar values in [13]. At the end of the README you can also find a small bibliography regarding the radiative transfer models, and another section about their usage for Live Fuel Moisture Content estimation.
Import the bindings into the namespace with
import progeosail
If the import was successful, you may choose to run PROSPECT and SAIL individually or to run their coupled version in one go. Keep in mind that should you choose to run SAIL individually, you will have to provide your own leaf reflectance and transmittance spectra arrays, while using PROSPECT will allow you to generate them by setting the model parameters appropriately.
The progeosail module contains the following functions:
run_prospect
run_sail
run_prosail
run_progeosail
We will now go through each function individually.
PROSPECT returns leaf reflectance and transmittance based on the biochemical characteristics of the leaf. Many different PROSPECT versions have surfaced since the publication of the original model in 1990, often introducing new parameters in the form of pigments. This implies that different model versions may require different parameters in order to run, and this module allows to choose between PROSPECT-5 and PROSPECT-D, which is used by default. The "D" in PROSPECT-D stands for "Dynamic", which refers to its capability to reproduce leaf phenology thanks to the addition of the anthocyanin pigment among the model variables. The complete list of PROSPECT-D model variables is summarized in the following table:
Parameter | Description of parameter | Units | Typical min | Typical max |
---|---|---|---|---|
N | Leaf structure parameter | - | 1.0 | 3.0 |
cab | Chlorophyll a+b concentration | ug/cm2 | 0 | 100 |
caw | Equivalent water thickness | cm | 0.0001 | 0.0360 |
car | Carotenoid concentration | ug/cm2 | 0 | 10 |
ant | Anthocyanin concentration | ug/cm2 | 0 | 40 |
cbrown | Brown pigment | - | 0 | 1 |
cm | Dry matter content | g/cm2 | 0.0017 | 0.0960 |
In order to run PROSPECT-D we will have to call the run_prospect
function and supply the anthocyanin pigment concentration (ant) as a keyword argument in addition to the leaf structure parameter (n), chlorophyll a and b concentration (cab), carotenoid pigment concentration (car), brown pigment (cbrown), water thickness (cw) and dry matter content (cm) as positional arguments:
wv, rho, tau = prosail.run_prospect(n, cab, car, cbrown, cw, cm, ant=8.0)
Where rho
and tau
represent the , leaf reflectance and transmittance spectra respectively, and wv
the wavelengths at which they were calculated.
In order to run PROSPECT-5, the prospect_version
keyword argument must be supplied and must be set to '5'
, while there is no need to supply the anthocyanin content, since it is not included in the model:
lam, rho, tau = prosail.run_prospect(n, cab, car, cbrown, cw, cm, prospect_version='5')
The Scattering by Arbitrarily Inclined Leaves (SAIL) model is one of the most widely used canopy reflectance models, and it was developed as an extension to Suits' 1972 one-dimensional, non-lambertian directional reflectance model [9]. In 1984, Verhoef proposed a novel solution of Suits' equations, introducing the Leaf Inclination Distribution Function (LIDF
) in order to improve the model performance against changing illumination and viewing angles.
Figure 1: Suits' canopy model
An example of Suits' model is shown in the previous figure: each canopy layer (e.g. grain, stalk, leaves) is modeled as a horizontal, infinitely extended layer, and in turn each layer is composed of randomly distributed and homogeneously mixed components. The parameters of the SAIL model are summarized in the following table:
Parameter | Description of parameter | Units | Typical min | Typical max |
---|---|---|---|---|
lai | Leaf Area Index | - | 0 | 7 |
lidfa | Average Leaf Slope (Angle) | - (deg) | - | - |
lidfb | Distribution bi-modality | - | - | - |
psoil | Dry/Wet soil factor | - | 0 | 1 |
rsoil | Soil brightness factor | - | 0 | 1 |
hspot | Hotspot parameter | - | 0.01 | 0.40 |
tts | Solar zenith angle | deg | 0 | 90 |
tto | Observer zenith angle | deg | 0 | 90 |
phi | Relative azimuth angle | deg | 0 | 360 |
typelidf | Leaf angle distribution type | Integer | - | - |
In addition to the Leaf Area Index (LAI) and the hotspot factor (hspot), SAIL requires the user to define a number of parameters related to the inclination of the leaves that compose the canopy, the soil reflectance spectrum, and the solar and viewing illumination angles. In order to avoid confusion and to explain the ways these parameters can be supplied using this module, it is worth dedicating a small paragraph to each of them.
As anticipated, SAIL requires the user to supply a soil reflectance spectrum in order to run. This module offers two pre-loaded soil spectra, rsoil1
which represents a dry soil, and rsoil2
which represents a wet soil. The numpy arrays containing the reflectance spectra can be accessed through the spectral_lib module as follows:
soil_spectrum1 = spectral_lib.soil.rsoil1
soil_spectrum2 = spectral_lib.soil.rsoil2
Figure 2: Default pyprosail soil spectra
Through the psoil
and rsoil
parameters allow the user to mix these two spectra in controlled proportions, using the following linear mixture model, where two spectra are mixed and then a brightness term added:
rho_soil = rsoil*(psoil*soil_spectrum1 + (1-psoil)*soil_spectrum2)
psoil
can be considered a "soil dryness parameter", as values close to zero will return a soil reflectance spectrum dominated by the wet soil, while values close to one will return a soil reflectance spectrum dominated by the dry soil. rsoil
acts as a generic soil brightness parameter, which we may use to scale the soil reflectance values.
The user may therefore use the two parameters psoil
and rsoil
to mix the default spectra as shown earlier. In addition, the user may supply an entirely new soil spectrum using the rsoil0
positional argument. Needless to say, if rsoil0
is supplied, the run_sail
function will ignore psoil
and rsoil
if they were supplied. If no rsoil0
was supplied and only one of the psoil
and rsoil
parameters was supplied, the the run_sail
function will throw an error.
The Leaf Inclination Distribution Function (LIDF
) is used to represent in a simple way a number of different leaf orientations. Verhoef [10] described a method
to define a number of different LIDFs using two parameters: average leaf slope LIDFa
, and distribution bi-modality LIDFb
. In addition to this method of LIDF representation, this library allows to use a simple ellipsoidal function characterized by a singular parameter representing the average leaf inclination angle.
The parameter typelidf
allows to switch between one method and the other:
typelidf = 1
: use the Verhoef two-parameter method, whereLIDFa
andLIDFb
control the average leaf slope and the distribution bimodality, respectively. Popular distributions are given by the following parameter combinations:
LIDF type | LIDFa |
LIDFb |
---|---|---|
Planophile | 1 | 0 |
Erectophile | -1 | 0 |
Plagiophile | 0 | -1 |
Extremophile | 0 | 1 |
Spherical | -0.35 | -0.15 |
Uniform | 0 | 0 |
typelidf = 2
Campbell distribution, whereLIDFa
parameter represents the average leaf angle (0 degrees is planophile, 90 degrees is erectophile). In this case, theLIDFb
parameter is ignored.
By default, the run_sail
function expects typelidf = 2
, and therefore only the LIDFa
value is required to run it. If the user wants to use the Verhoef parametrization, typelidf
should be set to 1
, and both LIDFa
and LIDFb
should be supplied.
A graphical representation of the Sun-Sensor geometry is shown in the following figure:
Figure 3: Sun-Sensor geometry scheme
SAIL expects the user to set the following three angular parameters:
- The Solar Zenith Angle (SZA)
tts
- The Viewer Zenith Angle (VZA)
tt0
- The Relative Azimuth Angle (RAA)
phi
, defined as the difference between the Solar Azimuth Angle (SAA) and the Viewer Azimuth Angle (VAA)
To run SAIL with two one-dimensional arrays of leaf reflectance and transmittance sampled with a 1 nm spacing between 400 and 2500 nm rho
and tau
, using an ideal black soil (e.g. zero reflectance), we can use the following command:
rho_canopy = prosail.run_sail(rho, tau, lai, lidfa, hspot, sza, vza, raa, rsoil0=np.zeros(2101))
As explained in the previous sections, the user may:
-
use a Verhoef-style two-parameter LIDF:
rho_canopy = prosail.run_sail(rho, tau, lai, lidfa, hspot, sza, vza, raa, lidftype=1, lidfb=lidfb, rsoil0=np.zeros(2101))
-
use
psoil
andrsoil
to mix the default spectra:rho_canopy = prosail.run_sail(rho, tau, lai, lidfa, hspot, sza, vza, raa, lidftype=1, lidfb=lidfb, rsoil=rsoil, psoil=psoil)
-
re-assign the
soil_spectrum1
andsoil_spectrum2
keywords to supply custom soil spectra and mix them using thepsoil
andrsoil
keywords:rho_canopy = prosail.run_sail(rho, tau, lai, lidfa, hspot, sza, vza, raa, lidftype=1, lidfb=lidfb, rsoil, psoil, soil_spectrum1=custom_soil1, soil_spectrum2=custom_soil2)
By default, run_sail
returns the surface directional reflectance (SDR), but you can choose other reflectance factors by setting using the factor
keyword argument to the appropriate value:
factor |
Description |
---|---|
SDR | Surface Directional Reflectance factor |
BHR | Bi-Hemispherical Reflectance factor |
DHR | Directional-Hemispherical Reflectance factor |
HDR | Hemispherical-Directional Reflectance factor |
ALL | All of the above |
ALLALL | All of the terms calculated by SAIL, including the above |
As anticipated, PROSPECT's output in terms of leaf reflectance and transmittance spectra can be directly fed into SAIL as an input. The inversion of PROSPECT is relatively easy, but from a remote sensing point of view, inverting the reflectance spectra of a singular leaf has limited applicability. On the other hand, SAIL provides a description of a leaf canopy, but its inversion from satellite or airborne data can be feasible only when several measurements from different viewing angles are available, which is almost never the case. To solve this issue, the two models were coupled into PROSAIL [73] since the early nineties. A graphical representation of the coupling scheme is shown in Figure 4.
Figure 4: PROSPECT + SAIL Coupling Scheme
The run_prosail
function can be used to run the combination of PROSPECT-5 or PROSPECT-D and SAIL in one step:
rho_canopy = prosail.run_prosail(n, cab, car, cbrown, cw, cm, lai, lidfa, hspot, tts, tto, psi)
In 2001 [3], the SAIL model was coupled with the Jasinski Geometric model (GEO) with the objective to allow the description of radiation reflected by and transmitted through discontinuous vegetation. In order to port this functionality to pyprosail
, we rewrote the Fortran subroutines GEOCONE
and GEOCILY
to Python, and interfaced them with the existing PROSAIL functions. At the moment, only nadir view is supported, and for this reason only the Sun Zenith Angle is included in the input variables, while the Viewing Zenith Angle is assumed to be zero.
Parameter | Description | Units |
---|---|---|
tts |
Sun Zenith Angle | deg |
rc |
Nadir-view reflectance of illuminated canopy | - |
tc |
Transmittance through canopy | - |
rch |
Hemispheric reflectance through canopy | - |
chw |
Canopy height-to-width ratio | m/m |
ccover |
Fraction of Canopy Cover | m^2/m^2 |
cshp |
Crown Shape | - |
The reflectance and transmittance spectra are all supplied by SAIL. If the Observer Zenith Angle tto
is set to zero (nadir view), the hemispherical-directional reflectance and transmittance through the canopy will correspond to rc
and tc
respectively, while the bi-hemispherical reflectance factor will correspond to rch
. The cshp
parameter allows to set the tree shape among the two currently supported, which are 'cylinder'
and 'cone
'. More can be implemented following the methodology described in [5].
A minimal run_progeosail
run would look like this:
rho_canopy = prosail.run_progeosail(chw, ccover, cshp,
n, cab, car, cbrown, cw, cm, \
lai, lidfa, hspot, tts, tto, psi)
Figure 1: [9]