-
Notifications
You must be signed in to change notification settings - Fork 1
/
preprocess_ccle_gdsc_utils.py
178 lines (155 loc) · 9.02 KB
/
preprocess_ccle_gdsc_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import gzip
import numpy as np
import pandas as pd
import data_config
import string
import feather
# def normalize_celline_names(s):
# s = s.upper()
# translator = str.maketrans('', '', string.punctuation + ' ')
# return s.translate(translator)
#
#
# def get_normalized_ccle_sample_dict(file_path=data_config.ccle_sample_file):
# ccle_celline_info = pd.read_csv(file_path, sep='\t')
# ccle_celline_info['Cell line primary name'] = ccle_celline_info['Cell line primary name'].map(
# normalize_celline_names)
# ccle_celline_info.loc[ccle_celline_info['CCLE name'] == 'TT_OESOPHAGUS', 'Cell line primary name']='T.T'
# ccle_celline_mapping_dict = pd.Series(ccle_celline_info['Cell line primary name'].values,
# index=ccle_celline_info['CCLE name']).to_dict()
# return ccle_celline_mapping_dict
# def preprocess_gdsc_target_dat(gdsc1_file=data_config.gdsc_target_file1, gdsc2_file=data_config.gdsc_target_file2,
# score='AUC', output_file_path=None):
# gdsc1_target_dat = pd.read_csv(gdsc1_file)[['CELL_LINE_NAME', 'DRUG_NAME', score]]
# gdsc2_target_dat = pd.read_csv(gdsc2_file)[['CELL_LINE_NAME', 'DRUG_NAME', score]]
#
# if score == 'LN_IC50':
# gdsc1_target_dat[score] = np.exp(gdsc1_target_dat[score])
# gdsc2_target_dat[score] = np.exp(gdsc2_target_dat[score])
#
# gdsc1_target_dat = gdsc1_target_dat.groupby(['CELL_LINE_NAME', 'DRUG_NAME']).mean()
# gdsc2_target_dat = gdsc2_target_dat.groupby(['CELL_LINE_NAME', 'DRUG_NAME']).mean()
# gdsc1_target_dat = gdsc1_target_dat.loc[gdsc1_target_dat.index.difference(gdsc2_target_dat.index)]
# target_dat = pd.concat([gdsc1_target_dat, gdsc2_target_dat], axis=0)
# target_dat.reset_index(inplace=True)
# target_dat['CELL_LINE_NAME'] = target_dat['CELL_LINE_NAME'].map(normalize_celline_names)
#
# if score == 'LN_IC50':
# target_dat[score] = np.log(target_dat[score])
#
# if output_file_path:
# target_dat.to_csv(output_file_path+'.csv')
# return target_dat
def preprocess_target_data(score='AUC', output_file_path=None):
# raw_target_df = preprocess_gdsc_target_dat(score=score, output_file_path=data_config.gdsc_target_file)
# sample_list = list(get_normalized_ccle_sample_dict().values())
# target_df = raw_target_df.pivot_table(index=['CELL_LINE_NAME'], columns='DRUG_NAME', values=score)
# target_df = target_df[target_df.index.isin(sample_list)]
#keep only tcga classified samples
ccle_sample_info = pd.read_csv(data_config.ccle_sample_file, index_col=4)
ccle_sample_info = ccle_sample_info.loc[ccle_sample_info.index.dropna()]
ccle_sample_info.index = ccle_sample_info.index.astype('int')
gdsc_sample_info = pd.read_csv(data_config.gdsc_sample_file, header=0, index_col=1)
gdsc_sample_info = gdsc_sample_info.loc[gdsc_sample_info.index.dropna()]
gdsc_sample_info.index = gdsc_sample_info.index.astype('int')
gdsc_sample_info = gdsc_sample_info.loc[gdsc_sample_info.iloc[:, 8].dropna().index]
gdsc_sample_mapping = gdsc_sample_info.merge(ccle_sample_info, left_index=True, right_index=True, how='inner')[
['Sample Name', 'DepMap_ID']]
gdsc_sample_mapping.reset_index(inplace=True)
gdsc_sample_mapping.set_index('Sample Name', inplace=True)
gdsc_sample_mapping_dict = gdsc_sample_mapping.to_dict()['DepMap_ID']
gdsc_drug_sensitivity = pd.read_csv(data_config.gdsc_target_file, skiprows=4, index_col=1)
gdsc_drug_sensitivity.drop(axis=1, columns=[gdsc_drug_sensitivity.columns[0]], inplace=True)
gdsc_drug_sensitivity.index = gdsc_drug_sensitivity.index.map(gdsc_sample_mapping_dict)
target_df = gdsc_drug_sensitivity.loc[gdsc_drug_sensitivity.index.dropna()]
target_df = target_df.astype('float32')
if output_file_path:
target_df.to_csv(output_file_path + '.csv', index_label='Sample')
return target_df
def preprocess_ccle_gex_df(file_path=data_config.ccle_gex_file,
output_file_path=None):
df = pd.read_csv(file_path, index_col=0)
#get hgnc
df.columns = df.columns.to_series().apply(lambda s: s[:s.find('(') - 1])
# with gzip.open(filename=file_path) as f:
# df = pd.read_csv(f, sep='\t')
# df.drop(columns=['transcript_ids'], inplace=True)
# # could be done with pandas read, dtype converters
# df.gene_id = df.gene_id.apply(lambda s: s[:s.find('.')])
# df.set_index('gene_id', inplace=True)
# df = df.transpose()
# df.index.name = 'Sample'
# df = df.loc[:, df.mean() != 0]
# df = np.log2(df + 0.001)
# normalized_name_dict = {name: name for name in df.index}
# normalized_name_dict.update(get_normalized_ccle_sample_dict())
# df.index = df.index.map(normalized_name_dict)
# if feature_list:
# genes_to_keep = list(set(df.columns.tolist()) & set(feature_list))
# df = df[genes_to_keep]
# if output_file_path:
# output_file_path = output_file_path + '_filtered'
df = df.astype('float32')
print('Preprocessed data has {0} samples and {1} features'.format(df.shape[0], df.shape[1]))
if output_file_path:
df.to_csv(output_file_path + '.csv', index_label='Sample')
return df
def load_ccle_muation_df(file_path=data_config.ccle_mut_file, filtered_variant=['Silent'], network_id_file=None):
mutation_df = pd.read_csv(file_path, index_col=1)[['DepMap_ID', 'Variant_Classification']]
mutation_df = mutation_df[~ mutation_df.Variant_Classification.isin(filtered_variant)]
mutation_df.drop(columns=['Variant_Classification'], inplace=True)
mutation_df['Score'] = 1
binary_mutation_df = pd.pivot_table(data=mutation_df, columns='Hugo_Symbol', index='DepMap_ID', values='Score', fill_value=0,
aggfunc=max)
if network_id_file:
with gzip.open(network_id_file) as f:
mapping_df = pd.read_csv(f, sep='\t', index_col=0)
binary_mutation_df = binary_mutation_df[binary_mutation_df.columns.intersection(mapping_df.preferred_name)]
print('Preprocessed data has {0} samples and {1} features'.format(binary_mutation_df.shape[0],
binary_mutation_df.shape[1]))
return binary_mutation_df
def preprocess_ccle_mut(propagation_flag=True, mutation_dat_file=data_config.ccle_mut_file,
kernel_file=data_config.propagation_kernel_file,network_id_file=data_config.string_id_mapping_file,
output_file_path=None):
if propagation_flag:
binary_mutation_df = load_ccle_muation_df(mutation_dat_file, network_id_file=network_id_file)
print('Propagation Start!')
#kernel = pd.read_feather(kernel_file, columns=binary_mutation_df.columns.union(['index']))
#kernel = pd.read_feather(kernel_file)
kernel = feather.read_dataframe(kernel_file)
kernel.set_index('index', inplace=True)
kernel.index = [ind.decode() for ind in kernel.index]
kernel = kernel.transpose()
binary_mutation_df = binary_mutation_df[binary_mutation_df.columns.intersection(kernel.columns)]
propagation_result = pd.DataFrame(np.zeros((binary_mutation_df.shape[0], kernel.shape[1])),
index=binary_mutation_df.index, columns=kernel.columns)
to_drop = []
for sample_id in propagation_result.index:
features_to_propagate = binary_mutation_df.columns[binary_mutation_df.loc[sample_id] == 1]
# print(features_to_propagate)
features_to_propagate = kernel.index.intersection(features_to_propagate)
# print(features_to_propagate)
if len(features_to_propagate) > 0:
propagation_result.loc[sample_id] = kernel.loc[features_to_propagate].sum(axis=0)
else:
to_drop.append(sample_id)
if len(to_drop) > 0:
propagation_result.drop(to_drop, inplace=True)
propagation_result = propagation_result.astype('float32')
if output_file_path:
print('Preprocessed data has {0} samples and {1} features'.format(propagation_result.shape[0],
propagation_result.shape[1]))
propagation_result.to_csv(output_file_path + '_propagated.csv', index_label='Sample')
return propagation_result
else:
binary_mutation_df = load_ccle_muation_df(mutation_dat_file)
if output_file_path:
print('Preprocessed data has {0} samples and {1} features'.format(binary_mutation_df.shape[0],
binary_mutation_df.shape[1]))
binary_mutation_df.to_csv(output_file_path + '.csv', index_label='Sample')
return binary_mutation_df
if __name__ == '__main__':
#preprocess_ccle_gex_df(output_file_path=data_config.ccle_preprocessed_gex_file)
preprocess_ccle_mut(output_file_path=data_config.ccle_preprocessed_mut_file)
preprocess_target_data(output_file_path=data_config.gdsc_preprocessed_target_file)