M. Chen, X. Zhou, "DeepRank: Learning to Rank with Neural Networks for Recommendation", Knowledge-Based Systems, Dec. 2020, 209, pp. 106478.
中文讲解请移步我的博客:http://snailwish.com/149/
DeepRank: Learning to Rank with Neural Networks for Recommendation
主要库版本: tensorflow 1.14.0
- Run listwise DeepRank:
$ python DeepRank.py --path datasets --data_name ml-100k/u.data --epoches 40 --batch_size 512 --user_factors 16 --item_factors 16 --layers [16,8] --reg 0.00001 --list_length 5 --num_positive 2 --sample_time 2 --top_n 10 --lr 0.01 --path_model model
- Run pairwise DeepRank:
$ python DeepRank.py --path datasets --data_name ml-100k/u.data --epoches 40 --batch_size 512 --user_factors 16 --item_factors 16 --layers [16,8] --reg 0.00001 --list_length 2 --num_positive 1 --sample_time 4 --top_n 10 --lr 0.01 --path_model model
- path:Input data path.
- data_name:Name of dataset
- epoches:Number of epoches.
- batch_size:Batch size.
- user_factors:Embedding size of users.
- item_factors: Embedding size of items.
- layers:Size of each layer. Note that the first hidden layer is the interaction layer.
- reg: Regularization for user and item embeddings.
- list_length: Length of list for training. In pairwise DeepRank list_length=2; in listwise DeepRank list_length>2.
- num_positive: Number of positive instances in training list. In pairwise DeepRank num_positive=1;
- sample_time: Time of sample from instances.
- top_n: Number of top_n list for recommendation.
- lr: Learning rate.
- path_model: Output path for saving pre_trained model.
Homepage: http://zhouxiuze.com
个人博客: http://snailwish.com/