Skip to content

DeepRank: Learning to Rank with Neural Networks for Recommendation

Notifications You must be signed in to change notification settings

XiuzeZhou/deeprank

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepRank

M. Chen, X. Zhou, "DeepRank: Learning to Rank with Neural Networks for Recommendation", Knowledge-Based Systems, Dec. 2020, 209, pp. 106478.

中文讲解请移步我的博客:http://snailwish.com/149/

DeepRank: Learning to Rank with Neural Networks for Recommendation

主要库版本: tensorflow 1.14.0

  • Run listwise DeepRank:

$ python DeepRank.py --path datasets --data_name ml-100k/u.data --epoches 40 --batch_size 512 --user_factors 16 --item_factors 16 --layers [16,8] --reg 0.00001 --list_length 5 --num_positive 2 --sample_time 2 --top_n 10 --lr 0.01 --path_model model

  • Run pairwise DeepRank:

$ python DeepRank.py --path datasets --data_name ml-100k/u.data --epoches 40 --batch_size 512 --user_factors 16 --item_factors 16 --layers [16,8] --reg 0.00001 --list_length 2 --num_positive 1 --sample_time 4 --top_n 10 --lr 0.01 --path_model model

Parameter description:

  • path:Input data path.
  • data_name:Name of dataset
  • epoches:Number of epoches.
  • batch_size:Batch size.
  • user_factors:Embedding size of users.
  • item_factors: Embedding size of items.
  • layers:Size of each layer. Note that the first hidden layer is the interaction layer.
  • reg: Regularization for user and item embeddings.
  • list_length: Length of list for training. In pairwise DeepRank list_length=2; in listwise DeepRank list_length>2.
  • num_positive: Number of positive instances in training list. In pairwise DeepRank num_positive=1;
  • sample_time: Time of sample from instances.
  • top_n: Number of top_n list for recommendation.
  • lr: Learning rate.
  • path_model: Output path for saving pre_trained model.

Homepage: http://zhouxiuze.com

个人博客: http://snailwish.com/