Skip to content

YU1ut/imet-6th-soltuion

Repository files navigation

iMet Collection 2019 - FGVC6

This is a PyTorch implementation of iMet Collection 2019.

This code is based on the baseline code.

Usage

Train

Make folds

python make_folds.py --n-folds 40

Train se_resnext101 from fold 0 to 9:

python main.py train model_se101_{fold} --model se_resnext101_32x4d --fold {fold} --n-epochs 40 --batch-size 32 --workers 8

Train inceptionresnetv2 from fold 5 to 9:

python main.py train model_inres2_{fold} --model inceptionresnetv2 --fold {fold} --n-epochs 40 --batch-size 32 --workers 8

Train pnas models from fold 0 to 4:

python main.py train model_pnas_{fold} --model pnasnet5large --fold {fold} --n-epochs 40 --batch-size 24 --workers 8

Test

The ensemble of these model is used to predict results in imet-predict-final.ipynb.

About

Code for iMet Collection 2019 - FGVC6

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published