-
Notifications
You must be signed in to change notification settings - Fork 426
/
deca.py
326 lines (296 loc) · 15.5 KB
/
deca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# -*- coding: utf-8 -*-
#
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# Using this computer program means that you agree to the terms
# in the LICENSE file included with this software distribution.
# Any use not explicitly granted by the LICENSE is prohibited.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# For comments or questions, please email us at deca@tue.mpg.de
# For commercial licensing contact, please contact ps-license@tuebingen.mpg.de
import os, sys
import torch
import torchvision
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
from time import time
from skimage.io import imread
import cv2
import pickle
from .utils.renderer import SRenderY, set_rasterizer
from .models.encoders import ResnetEncoder
from .models.FLAME import FLAME, FLAMETex
from .models.decoders import Generator
from .utils import util
from .utils.rotation_converter import batch_euler2axis
from .utils.tensor_cropper import transform_points
from .datasets import datasets
from .utils.config import cfg
torch.backends.cudnn.benchmark = True
class DECA(nn.Module):
def __init__(self, config=None, device='cuda'):
super(DECA, self).__init__()
if config is None:
self.cfg = cfg
else:
self.cfg = config
self.device = device
self.image_size = self.cfg.dataset.image_size
self.uv_size = self.cfg.model.uv_size
self._create_model(self.cfg.model)
self._setup_renderer(self.cfg.model)
def _setup_renderer(self, model_cfg):
set_rasterizer(self.cfg.rasterizer_type)
self.render = SRenderY(self.image_size, obj_filename=model_cfg.topology_path, uv_size=model_cfg.uv_size, rasterizer_type=self.cfg.rasterizer_type).to(self.device)
# face mask for rendering details
mask = imread(model_cfg.face_eye_mask_path).astype(np.float32)/255.; mask = torch.from_numpy(mask[:,:,0])[None,None,:,:].contiguous()
self.uv_face_eye_mask = F.interpolate(mask, [model_cfg.uv_size, model_cfg.uv_size]).to(self.device)
mask = imread(model_cfg.face_mask_path).astype(np.float32)/255.; mask = torch.from_numpy(mask[:,:,0])[None,None,:,:].contiguous()
self.uv_face_mask = F.interpolate(mask, [model_cfg.uv_size, model_cfg.uv_size]).to(self.device)
# displacement correction
fixed_dis = np.load(model_cfg.fixed_displacement_path)
self.fixed_uv_dis = torch.tensor(fixed_dis).float().to(self.device)
# mean texture
mean_texture = imread(model_cfg.mean_tex_path).astype(np.float32)/255.; mean_texture = torch.from_numpy(mean_texture.transpose(2,0,1))[None,:,:,:].contiguous()
self.mean_texture = F.interpolate(mean_texture, [model_cfg.uv_size, model_cfg.uv_size]).to(self.device)
# dense mesh template, for save detail mesh
self.dense_template = np.load(model_cfg.dense_template_path, allow_pickle=True, encoding='latin1').item()
def _create_model(self, model_cfg):
# set up parameters
self.n_param = model_cfg.n_shape+model_cfg.n_tex+model_cfg.n_exp+model_cfg.n_pose+model_cfg.n_cam+model_cfg.n_light
self.n_detail = model_cfg.n_detail
self.n_cond = model_cfg.n_exp + 3 # exp + jaw pose
self.num_list = [model_cfg.n_shape, model_cfg.n_tex, model_cfg.n_exp, model_cfg.n_pose, model_cfg.n_cam, model_cfg.n_light]
self.param_dict = {i:model_cfg.get('n_' + i) for i in model_cfg.param_list}
# encoders
self.E_flame = ResnetEncoder(outsize=self.n_param).to(self.device)
self.E_detail = ResnetEncoder(outsize=self.n_detail).to(self.device)
# decoders
self.flame = FLAME(model_cfg).to(self.device)
if model_cfg.use_tex:
self.flametex = FLAMETex(model_cfg).to(self.device)
self.D_detail = Generator(latent_dim=self.n_detail+self.n_cond, out_channels=1, out_scale=model_cfg.max_z, sample_mode = 'bilinear').to(self.device)
# resume model
model_path = self.cfg.pretrained_modelpath
if os.path.exists(model_path):
print(f'trained model found. load {model_path}')
checkpoint = torch.load(model_path)
self.checkpoint = checkpoint
util.copy_state_dict(self.E_flame.state_dict(), checkpoint['E_flame'])
util.copy_state_dict(self.E_detail.state_dict(), checkpoint['E_detail'])
util.copy_state_dict(self.D_detail.state_dict(), checkpoint['D_detail'])
else:
print(f'please check model path: {model_path}')
# exit()
# eval mode
self.E_flame.eval()
self.E_detail.eval()
self.D_detail.eval()
def decompose_code(self, code, num_dict):
''' Convert a flattened parameter vector to a dictionary of parameters
code_dict.keys() = ['shape', 'tex', 'exp', 'pose', 'cam', 'light']
'''
code_dict = {}
start = 0
for key in num_dict:
end = start+int(num_dict[key])
code_dict[key] = code[:, start:end]
start = end
if key == 'light':
code_dict[key] = code_dict[key].reshape(code_dict[key].shape[0], 9, 3)
return code_dict
def displacement2normal(self, uv_z, coarse_verts, coarse_normals):
''' Convert displacement map into detail normal map
'''
batch_size = uv_z.shape[0]
uv_coarse_vertices = self.render.world2uv(coarse_verts).detach()
uv_coarse_normals = self.render.world2uv(coarse_normals).detach()
uv_z = uv_z*self.uv_face_eye_mask
uv_detail_vertices = uv_coarse_vertices + uv_z*uv_coarse_normals + self.fixed_uv_dis[None,None,:,:]*uv_coarse_normals.detach()
dense_vertices = uv_detail_vertices.permute(0,2,3,1).reshape([batch_size, -1, 3])
uv_detail_normals = util.vertex_normals(dense_vertices, self.render.dense_faces.expand(batch_size, -1, -1))
uv_detail_normals = uv_detail_normals.reshape([batch_size, uv_coarse_vertices.shape[2], uv_coarse_vertices.shape[3], 3]).permute(0,3,1,2)
uv_detail_normals = uv_detail_normals*self.uv_face_eye_mask + uv_coarse_normals*(1.-self.uv_face_eye_mask)
return uv_detail_normals
def visofp(self, normals):
''' visibility of keypoints, based on the normal direction
'''
normals68 = self.flame.seletec_3d68(normals)
vis68 = (normals68[:,:,2:] < 0.1).float()
return vis68
# @torch.no_grad()
def encode(self, images, use_detail=True):
if use_detail:
# use_detail is for training detail model, need to set coarse model as eval mode
with torch.no_grad():
parameters = self.E_flame(images)
else:
parameters = self.E_flame(images)
codedict = self.decompose_code(parameters, self.param_dict)
codedict['images'] = images
if use_detail:
detailcode = self.E_detail(images)
codedict['detail'] = detailcode
if self.cfg.model.jaw_type == 'euler':
posecode = codedict['pose']
euler_jaw_pose = posecode[:,3:].clone() # x for yaw (open mouth), y for pitch (left ang right), z for roll
posecode[:,3:] = batch_euler2axis(euler_jaw_pose)
codedict['pose'] = posecode
codedict['euler_jaw_pose'] = euler_jaw_pose
return codedict
# @torch.no_grad()
def decode(self, codedict, rendering=True, iddict=None, vis_lmk=True, return_vis=True, use_detail=True,
render_orig=False, original_image=None, tform=None):
images = codedict['images']
batch_size = images.shape[0]
## decode
verts, landmarks2d, landmarks3d = self.flame(shape_params=codedict['shape'], expression_params=codedict['exp'], pose_params=codedict['pose'])
if self.cfg.model.use_tex:
albedo = self.flametex(codedict['tex'])
else:
albedo = torch.zeros([batch_size, 3, self.uv_size, self.uv_size], device=images.device)
landmarks3d_world = landmarks3d.clone()
## projection
landmarks2d = util.batch_orth_proj(landmarks2d, codedict['cam'])[:,:,:2]; landmarks2d[:,:,1:] = -landmarks2d[:,:,1:]#; landmarks2d = landmarks2d*self.image_size/2 + self.image_size/2
landmarks3d = util.batch_orth_proj(landmarks3d, codedict['cam']); landmarks3d[:,:,1:] = -landmarks3d[:,:,1:] #; landmarks3d = landmarks3d*self.image_size/2 + self.image_size/2
trans_verts = util.batch_orth_proj(verts, codedict['cam']); trans_verts[:,:,1:] = -trans_verts[:,:,1:]
opdict = {
'verts': verts,
'trans_verts': trans_verts,
'landmarks2d': landmarks2d,
'landmarks3d': landmarks3d,
'landmarks3d_world': landmarks3d_world,
}
## rendering
if return_vis and render_orig and original_image is not None and tform is not None:
points_scale = [self.image_size, self.image_size]
_, _, h, w = original_image.shape
# import ipdb; ipdb.set_trace()
trans_verts = transform_points(trans_verts, tform, points_scale, [h, w])
landmarks2d = transform_points(landmarks2d, tform, points_scale, [h, w])
landmarks3d = transform_points(landmarks3d, tform, points_scale, [h, w])
background = original_image
images = original_image
else:
h, w = self.image_size, self.image_size
background = None
if rendering:
# ops = self.render(verts, trans_verts, albedo, codedict['light'])
ops = self.render(verts, trans_verts, albedo, h=h, w=w, background=background)
## output
opdict['grid'] = ops['grid']
opdict['rendered_images'] = ops['images']
opdict['alpha_images'] = ops['alpha_images']
opdict['normal_images'] = ops['normal_images']
if self.cfg.model.use_tex:
opdict['albedo'] = albedo
if use_detail:
uv_z = self.D_detail(torch.cat([codedict['pose'][:,3:], codedict['exp'], codedict['detail']], dim=1))
if iddict is not None:
uv_z = self.D_detail(torch.cat([iddict['pose'][:,3:], iddict['exp'], codedict['detail']], dim=1))
uv_detail_normals = self.displacement2normal(uv_z, verts, ops['normals'])
uv_shading = self.render.add_SHlight(uv_detail_normals, codedict['light'])
uv_texture = albedo*uv_shading
opdict['uv_texture'] = uv_texture
opdict['normals'] = ops['normals']
opdict['uv_detail_normals'] = uv_detail_normals
opdict['displacement_map'] = uv_z+self.fixed_uv_dis[None,None,:,:]
if vis_lmk:
landmarks3d_vis = self.visofp(ops['transformed_normals'])#/self.image_size
landmarks3d = torch.cat([landmarks3d, landmarks3d_vis], dim=2)
opdict['landmarks3d'] = landmarks3d
if return_vis:
## render shape
shape_images, _, grid, alpha_images = self.render.render_shape(verts, trans_verts, h=h, w=w, images=background, return_grid=True)
detail_normal_images = F.grid_sample(uv_detail_normals, grid, align_corners=False)*alpha_images
shape_detail_images = self.render.render_shape(verts, trans_verts, detail_normal_images=detail_normal_images, h=h, w=w, images=background)
## extract texture
## TODO: current resolution 256x256, support higher resolution, and add visibility
uv_pverts = self.render.world2uv(trans_verts)
uv_gt = F.grid_sample(images, uv_pverts.permute(0,2,3,1)[:,:,:,:2], mode='bilinear', align_corners=False)
if self.cfg.model.use_tex:
## TODO: poisson blending should give better-looking results
if self.cfg.model.extract_tex:
uv_texture_gt = uv_gt[:,:3,:,:]*self.uv_face_eye_mask + (uv_texture[:,:3,:,:]*(1-self.uv_face_eye_mask))
else:
uv_texture_gt = uv_texture[:,:3,:,:]
else:
uv_texture_gt = uv_gt[:,:3,:,:]*self.uv_face_eye_mask + (torch.ones_like(uv_gt[:,:3,:,:])*(1-self.uv_face_eye_mask)*0.7)
opdict['uv_texture_gt'] = uv_texture_gt
visdict = {
'inputs': images,
'landmarks2d': util.tensor_vis_landmarks(images, landmarks2d),
'landmarks3d': util.tensor_vis_landmarks(images, landmarks3d),
'shape_images': shape_images,
'shape_detail_images': shape_detail_images
}
if self.cfg.model.use_tex:
visdict['rendered_images'] = ops['images']
return opdict, visdict
else:
return opdict
def visualize(self, visdict, size=224, dim=2):
'''
image range should be [0,1]
dim: 2 for horizontal. 1 for vertical
'''
assert dim == 1 or dim==2
grids = {}
for key in visdict:
_,_,h,w = visdict[key].shape
if dim == 2:
new_h = size; new_w = int(w*size/h)
elif dim == 1:
new_h = int(h*size/w); new_w = size
grids[key] = torchvision.utils.make_grid(F.interpolate(visdict[key], [new_h, new_w]).detach().cpu())
grid = torch.cat(list(grids.values()), dim)
grid_image = (grid.numpy().transpose(1,2,0).copy()*255)[:,:,[2,1,0]]
grid_image = np.minimum(np.maximum(grid_image, 0), 255).astype(np.uint8)
return grid_image
def save_obj(self, filename, opdict):
'''
vertices: [nv, 3], tensor
texture: [3, h, w], tensor
'''
i = 0
vertices = opdict['verts'][i].cpu().numpy()
faces = self.render.faces[0].cpu().numpy()
texture = util.tensor2image(opdict['uv_texture_gt'][i])
uvcoords = self.render.raw_uvcoords[0].cpu().numpy()
uvfaces = self.render.uvfaces[0].cpu().numpy()
# save coarse mesh, with texture and normal map
normal_map = util.tensor2image(opdict['uv_detail_normals'][i]*0.5 + 0.5)
util.write_obj(filename, vertices, faces,
texture=texture,
uvcoords=uvcoords,
uvfaces=uvfaces,
normal_map=normal_map)
# upsample mesh, save detailed mesh
texture = texture[:,:,[2,1,0]]
normals = opdict['normals'][i].cpu().numpy()
displacement_map = opdict['displacement_map'][i].cpu().numpy().squeeze()
dense_vertices, dense_colors, dense_faces = util.upsample_mesh(vertices, normals, faces, displacement_map, texture, self.dense_template)
util.write_obj(filename.replace('.obj', '_detail.obj'),
dense_vertices,
dense_faces,
colors = dense_colors,
inverse_face_order=True)
def run(self, imagepath, iscrop=True):
''' An api for running deca given an image path
'''
testdata = datasets.TestData(imagepath)
images = testdata[0]['image'].to(self.device)[None,...]
codedict = self.encode(images)
opdict, visdict = self.decode(codedict)
return codedict, opdict, visdict
def model_dict(self):
return {
'E_flame': self.E_flame.state_dict(),
'E_detail': self.E_detail.state_dict(),
'D_detail': self.D_detail.state_dict()
}