Skip to content

YanFangCS/CyCTR-Pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CyCTR-PyTorch

This is a PyTorch re-implementation of NeurIPS 2021 paper "Few-Shot Segmentation via Cycle-Consistent Transformer".

News

(Feb. 2022) Fix some bugs and update some results.

Usage

Requirements

Python==3.8
GCC==5.4
torch==1.6.0
torchvision==0.7.0
cython
tensorboardX
tqdm
PyYaml
opencv-python
pycocotools

Build Dependencies

cd model/ops/
bash make.sh
cd ../../

Data Preparation

  • PASCAL-5^i: Please refer to PFENet to prepare the PASCAL dataset for few-shot segmentation.

  • COCO-20^i: Please download COCO2017 dataset from here. Put or link the dataset to YOUR_PROJ_PATH/data/coco. And make the directory like this:

${YOUR_PROJ_PATH}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- instances_train2017.json
        |   `-- instances_val2017.json
        |-- train2017
        |   |-- 000000000009.jpg
        |   |-- 000000000025.jpg
        |   |-- 000000000030.jpg
        |   |-- ... 
        `-- val2017
            |-- 000000000139.jpg
            |-- 000000000285.jpg
            |-- 000000000632.jpg
            |-- ... 

Then, run

python prepare_coco_data.py

to prepare COCO-20^i data.

Train

Download the ImageNet pretrained backbones and put them into the initmodel directory.

Then, run this command:

    sh train.sh {*dataset*} {*model_config*}

For example,

    sh train.sh pascal split0_resnet50

Test Only

  • Modify config file (specify checkpoint path)
  • Run the following command:
    sh test.sh {*dataset*} {*model_config*}

For example,

    sh test.sh pascal split0_resnet50

Results on 1-shot Pascal-5^i with ResNet50 backbone (checkpoints)

Model Split-0 Split-1 Split-2 Split-3 Mean
CyCTR_resnet50 65.7 71.0 59.5 59.7 64.0

Results on 5-shot Pascal-5^i with ResNet50 backbone (checkpoints)

Model Split-0 Split-1 Split-2 Split-3 Mean
CyCTR_resnet50 69.3 73.5 63.8 63.5 67.5

Results on 1-shot Pascal-5^i with ResNet101 backbone (checkpoints)

Model Split-0 Split-1 Split-2 Split-3 Mean
CyCTR_resnet50 67.2 71.1 57.6 59.0 63.7

Results on 5-shot Pascal-5^i with ResNet101 backbone (checkpoints)

Model Split-0 Split-1 Split-2 Split-3 Mean
CyCTR_resnet50 71.0 75.0 58.5 65.0 67.4

Acknowledgement

This project is built upon PFENet and Deformable-DETR, thanks for their great works!

Citation

If you find our codes or models useful, please consider to give us a star or cite with:

@article{zhang2021few,
  title={Few-shot segmentation via cycle-consistent transformer},
  author={Zhang, Gengwei and Kang, Guoliang and Yang, Yi and Wei, Yunchao},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  pages={21984--21996},
  year={2021}
}

About

CyCTR implemented using pytorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published