This is a PyTorch re-implementation of NeurIPS 2021 paper "Few-Shot Segmentation via Cycle-Consistent Transformer".
(Feb. 2022) Fix some bugs and update some results.
Python==3.8
GCC==5.4
torch==1.6.0
torchvision==0.7.0
cython
tensorboardX
tqdm
PyYaml
opencv-python
pycocotools
cd model/ops/
bash make.sh
cd ../../
-
PASCAL-5^i: Please refer to PFENet to prepare the PASCAL dataset for few-shot segmentation.
-
COCO-20^i: Please download COCO2017 dataset from here. Put or link the dataset to
YOUR_PROJ_PATH/data/coco
. And make the directory like this:
${YOUR_PROJ_PATH}
|-- data
`-- |-- coco
`-- |-- annotations
| |-- instances_train2017.json
| `-- instances_val2017.json
|-- train2017
| |-- 000000000009.jpg
| |-- 000000000025.jpg
| |-- 000000000030.jpg
| |-- ...
`-- val2017
|-- 000000000139.jpg
|-- 000000000285.jpg
|-- 000000000632.jpg
|-- ...
Then, run
python prepare_coco_data.py
to prepare COCO-20^i data.
Download the ImageNet pretrained backbones and put them into the initmodel
directory.
Then, run this command:
sh train.sh {*dataset*} {*model_config*}
For example,
sh train.sh pascal split0_resnet50
- Modify
config
file (specify checkpoint path) - Run the following command:
sh test.sh {*dataset*} {*model_config*}
For example,
sh test.sh pascal split0_resnet50
Results on 1-shot Pascal-5^i with ResNet50 backbone (checkpoints)
Model | Split-0 | Split-1 | Split-2 | Split-3 | Mean |
---|---|---|---|---|---|
CyCTR_resnet50 | 65.7 | 71.0 | 59.5 | 59.7 | 64.0 |
Results on 5-shot Pascal-5^i with ResNet50 backbone (checkpoints)
Model | Split-0 | Split-1 | Split-2 | Split-3 | Mean |
---|---|---|---|---|---|
CyCTR_resnet50 | 69.3 | 73.5 | 63.8 | 63.5 | 67.5 |
Results on 1-shot Pascal-5^i with ResNet101 backbone (checkpoints)
Model | Split-0 | Split-1 | Split-2 | Split-3 | Mean |
---|---|---|---|---|---|
CyCTR_resnet50 | 67.2 | 71.1 | 57.6 | 59.0 | 63.7 |
Results on 5-shot Pascal-5^i with ResNet101 backbone (checkpoints)
Model | Split-0 | Split-1 | Split-2 | Split-3 | Mean |
---|---|---|---|---|---|
CyCTR_resnet50 | 71.0 | 75.0 | 58.5 | 65.0 | 67.4 |
This project is built upon PFENet and Deformable-DETR, thanks for their great works!
If you find our codes or models useful, please consider to give us a star or cite with:
@article{zhang2021few,
title={Few-shot segmentation via cycle-consistent transformer},
author={Zhang, Gengwei and Kang, Guoliang and Yang, Yi and Wei, Yunchao},
journal={Advances in Neural Information Processing Systems},
volume={34},
pages={21984--21996},
year={2021}
}