Skip to content

code for Combining Hindsight and Imagination in Multi-goal ReinforcementLearning

Notifications You must be signed in to change notification settings

YangRui2015/HERO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

HERO

Code for Combining Hindsight and Imagination in Multi-goal ReinforcementLearning

Installation

  • Install the requirements such as tensorflow, mpi4py, gym, and mujoco_py using pip;

  • Clone the repo and cd into it;

  • Install baselines package

    pip install -e .

Usage

Experiment environments: FetchReach-v1, FetchPush-v1, FetchSlide-v1, FetchPickAndPlace-v1, HandReach-v0, HandManipulateBlockRotateXYZ-v0.

DDPG:

python -m  baselines.run  --env=FetchPush-v1 --num_epoch 50 --num_env 12 --noher True --log_path=~/logs/FetchPush_env12/ --save_path=~/ddpg/fetchpush/

HER:

python -m  baselines.run  --env=FetchPush-v1 --num_epoch 50 --num_env 12 --log_path=~/logs/FetchPush_env12/ --save_path=~/her/fetchpush/

HERO:

python -m  baselines.run --env=FetchPush-v1 --num_epoch 50 --num_env 12  --n_step 2 --mode dynamic --alpha 0.4 --log_path=~/logs/FetchPush_env12_nstep_2/ --save_path=~/policies/mmher/fetchpush/

Main Functions

The main functions of our algorithms are in /baselines/her/her_sampler.py. Names of our main function is _sample_nstep_dynamic_her_transitions.

About

code for Combining Hindsight and Imagination in Multi-goal ReinforcementLearning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages