This is a repo fetch originally from https://github.com/yfeng95/PRNet, as our COMP 5212 - Machine Learning
project.
PyTorch=1.0.1: https://pytorch.org (PyTorch 1.1 has a svd bug, which will crash the training)
scipy>=1.2
numpy
h5py
tqdm
sklearn
conda env create -f environment.yml --name prnet
conda activate prnet
python main.py --exp_name=exp1
python main.py --exp_name=exp2 --unseen=True
python main.py --exp_name=exp3 --gaussian_noise=True
python main.py --exp_name exp2 --unseen True --eval
You can try evaluation first.
Please cite this paper if you want to use it in your work,
@InProceedings{Wang_2019_NeurIPS,
title={PRNet: Self-Supervised Learning for Partial-to-Partial Registration},
author={Wang, Yue and Solomon, Justin M.},
booktitle = {33rd Conference on Neural Information Processing Systems (To appear)},
year={2019}
}
Code reference: Deep Closest Point
MIT License