Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

离散数学图论 #19

Open
Zacharia2 opened this issue Aug 8, 2023 · 5 comments
Open

离散数学图论 #19

Zacharia2 opened this issue Aug 8, 2023 · 5 comments

Comments

@Zacharia2
Copy link
Owner

No description provided.

@Zacharia2

This comment was marked as resolved.

@Zacharia2 Zacharia2 changed the title 图论,连续和离散笔记。 离散数学图论,连续和离散笔记。 Aug 22, 2023
@Zacharia2
Copy link
Owner Author

Zacharia2 commented Aug 27, 2023

离散数学
“研究离散结构的数学分科。”--《辞海》79年版,P355

离散数学 (Discrete mathematics) 是研究离散量的结构及其相互关系的数学学科,是 现代数学 的一个重要分支。 离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限个或可数个元素。

离散数学(Discrete Mathematics)
数学的几个分支的总称,以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数无穷个元素;因此它充分描述了计算机科学离散性的特点。

Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.
There is no exact definition of the term "discrete mathematics."
Indeed, discrete mathematics is described less by what is included than by what is excluded: continuously varying quantities and related notions.

——wikipedia

由于计算机是一个离散结构,它只能处理离散的或离散化了的数量关系

因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。

@Zacharia2
Copy link
Owner Author

用一组基本的指令来编制一个计算机程序,非常类似于从一组公理来构造一个数学证明。
—-D.E.Knuth(高德纳)
1974年Turing奖获得者代表作:The Art of Computer Programming

“我现在年纪大了,搞了这么多年的软件,错误不知犯了多少,现在觉悟了。我想,假如我早年在数理逻辑上好好下点工夫的话,我就不会犯这么多的错误。不少东西逻辑学家早就说过了,可是我不知道。要是我能年轻二十岁的话,我就回去学逻辑。”
-E.W.Dijkstra
1972年Turing奖获得者

@Zacharia2
Copy link
Owner Author

Zacharia2 commented Aug 27, 2023

加大投入
多读 多听 多想 多练
活学活用 不要死记硬背
注重知识积累,不要只求短期效应学习过程比学习内容更重要加强逻辑性训练
解决问题、快乐生活的基础

教材
刘铎 编著.
《离散数学及应用》,清华大学出版社

@Zacharia2

This comment was marked as resolved.

@Zacharia2 Zacharia2 changed the title 离散数学图论,连续和离散笔记。 离散数学图论 Dec 29, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant