%
% SPFormer: Self-Pooling Transformer for Few-Shot Hyperspectral Image Classification.
% Version: 1.0
% Date : Dec. 2023
%
% This demo implements the SPFormer model for hyperspectral image classification.
%
%
%
% --------------------------------------
% Note: Required
% --------------------------------------
% 1. python==3.6
% 2. torch==1.10.2
% 3. cuda==11.1.1
% --------------------------------------
% Cite:
% --------------------------------------
%
% [1] Z. Li, Z. Xue, Q. Xu, L. Zhang, T. Zhu and M. Zhang, "SPFormer: Self-Pooling Transformer for Few-Shot Hyperspectral Image Classification," in IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-19, 2024, Art no. 5502019.
%
% --------------------------------------
% Copyright & Disclaimer
% --------------------------------------
%
% The programs contained in this package are granted free of charge for
% research and education purposes only.
%
% Copyright (c) 2022 by Zhaohui Xue
% zhaohui.xue@hhu.edu.cn
% --------------------------------------
% For full package:
% --------------------------------------
% https://sites.google.com/site/zhaohuixuers/
-
Notifications
You must be signed in to change notification settings - Fork 0
ZhaohuiXue/SPFormer
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
A DEMO for "SPFormer: Self-Pooling Transformer for Few-Shot Hyperspectral Image Classification" (Li et al., TGRS 2024)
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published