- Install Tensorflow 1.11, Matlab R2017a
- Download Test datasets
- Modify
config.py
(if you want to test x3 model on Set14,config.TEST.model_path = 'checkpoint_x3/model.ckpt'
config.TEST.dataset = 'Set14'
) andtest.py
(scale = 3
). - Run testing:
python test.py
- Download Training dataset
- Modify
config.py
(if you want to train x4 model,config.TRAIN.hr_img_path = '/path/to/DIV2K_train_HR/'
config.TRAIN.checkpoint_dir = 'checkpoint_x4/'
config.VALID.hr_img_path = '/path/to/DIV2K_valid_HR/'
config.VALID.lr_img_path = '/path/to/DIV2K_valid_LR_x4/'
) andtrain_SR.py
(scale = 4
) - Run training:
python train_SR.py
This TensorFlow version is trained with DIV2K training dataset on RGB channels. Additionally, We modify the upsample layer to subpixel convolution (the original version is transposed convolution).
The following PSNR/SSIMs are evaluated on Matlab R2017a and the code can be referred to Evaluate_PSNR_SSIM.m.
Training dataset | Scale | Set5 | Set14 | B100 | Urban100 |
---|---|---|---|---|---|
291 | ×2 | 37.83 / 0.9600 | 33.30 / 0.9148 | 32.08 / 0.8985 | 31.27 / 0.9196 |
DIV2K | ×2 | 37.85 / 0.9598 | 33.58 / 0.9178 | 32.11 / 0.8989 | 31.95 / 0.9266 |
291 | ×3 | 34.11 / 0.9253 | 29.99 / 0.8354 | 28.95 / 0.8013 | 27.42 / 0.8359 |
DIV2K | ×3 | 34.24 / 0.9260 | 30.27 / 0.8408 | 29.03 / 0.8038 | 27.99 / 0.8489 |
291 | ×4 | 31.82 / 0.8903 | 28.25 / 0.7730 | 27.41 / 0.7297 | 25.41 / 0.7632 |
DIV2K | ×4 | 31.99 / 0.8928 | 28.52 / 0.7794 | 27.52 / 0.7339 | 25.92 / 0.7801 |
Scale | Model size |
---|---|
×2 | 579,276 |
×3 | 587,931 |
×4 | 600,048 |
If you find IDN useful in your research, please consider citing:
@inproceedings{Hui-IDN-2018,
title={Fast and Accurate Single Image Super-Resolution via Information Distillation Network},
author={Hui, Zheng and Wang, Xiumei and Gao, Xinbo},
booktitle={CVPR},
pages = {723--731},
year={2018}
}