Skip to content

ZifengDing/FITCARL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 

Repository files navigation

FITCARL

This is the code for the paper Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs using Confidence-Augmented Reinforcement Learning (paper (appendices also included)) accepted to ECML/PKDD 2023.

Datasets are already preprocessed. Due to file size limit, we put the ent2sec_matrix.npy of ICEWS18 and ICEWS0515 in this link.

To run 3-shot meta-training on ICEWS14-OOG:

python3 main_OOG.py --data_path data/ICEWS14/processed_data --pretrain --emb_nograd --history_encoder gru --score_module att --few 3 --valid_epoch 10 --max_action_num 50 --entity_learner nn --adaptive_sample --sector --save_path logs/icews14_few3 --beam_size 100 --conf --cuda

To run 1-shot meta-training on ICEWS14-OOG:

python3 main_OOG.py --data_path data/ICEWS14/processed_data --pretrain --emb_nograd --history_encoder gru --score_module att --few 1 --valid_epoch 10 --max_action_num 50 --entity_learner nn --adaptive_sample --sector --save_path logs/icews14_few1 --beam_size 100 --conf --cuda

ICEWS18-OOG and ICEWS0515-OOG are only trainable with more than 15GB GPU memory.

You can also try as you wish. Just change the corresponding arguments from the above examples.

Code is developed based on TITer.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages