-
Notifications
You must be signed in to change notification settings - Fork 0
/
M-epsilon.nb
11163 lines (10970 loc) · 526 KB
/
M-epsilon.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 13.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 527732, 11155]
NotebookOptionsPosition[ 519674, 11012]
NotebookOutlinePosition[ 520181, 11031]
CellTagsIndexPosition[ 520138, 11028]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{" ",
RowBox[{
RowBox[{
RowBox[{"SetDirectory", "@",
RowBox[{"NotebookDirectory", "[", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Import", "[", "\"\<QLanczos_package.m\>\"", "]"}],
";"}]}]}]], "Input",
CellChangeTimes->{3.8990040986576505`*^9, 3.8990242258838863`*^9},
CellLabel->"In[1]:=",ExpressionUUID->"bbdbbcb5-9383-4403-bd71-1b401d4d0b28"],
Cell[CellGroupData[{
Cell["Parameters", "Section",
CellChangeTimes->{{3.8991276263730574`*^9, 3.8991276374910445`*^9}, {
3.9144190395562496`*^9,
3.9144190424029465`*^9}},ExpressionUUID->"45939e6f-720c-4633-af8d-\
5138c57623dd"],
Cell[BoxData[{
RowBox[{
RowBox[{"\[Kappa]", "=", "0.1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Eta]", "=",
RowBox[{"1.5", "*",
RowBox[{"10", "^",
RowBox[{"-", "15"}]}]}]}], ";"}],
RowBox[{"(*",
RowBox[{"machine", " ", "precision"}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Eta]List", "=",
RowBox[{"Table", "[",
RowBox[{
SuperscriptBox["10.", "j"], ",",
RowBox[{"{",
RowBox[{"j", ",",
RowBox[{"-", "13"}], ",",
RowBox[{"-", "1"}], ",", "0.1"}], "}"}]}], "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.8991277506677113`*^9, 3.8991277533249826`*^9}, {
3.899127810090656*^9, 3.8991278103594065`*^9}, {3.899183121469557*^9,
3.8991831295266633`*^9}, {3.8999629766674905`*^9,
3.8999629778268347`*^9}, {3.899963233878603*^9, 3.8999632342158546`*^9}, {
3.8999634024658346`*^9, 3.8999634026422057`*^9}, {3.901785478062609*^9,
3.901785518172467*^9}, {3.901794513434124*^9, 3.9017945400159254`*^9}, {
3.9017946035180244`*^9, 3.9017946179925423`*^9}, {3.901803501710726*^9,
3.90180350202597*^9}, {3.9018035751738396`*^9, 3.901803575458697*^9}, {
3.9018036101884327`*^9, 3.9018036556781197`*^9}, {3.9018038659108686`*^9,
3.901803867044541*^9}, {3.901803914404373*^9, 3.9018039155138173`*^9}, {
3.901803961232405*^9, 3.9018039618355584`*^9}, {3.90180399842292*^9,
3.9018039987309456`*^9}, {3.901804057078007*^9, 3.9018040574047146`*^9}, {
3.9018055848655157`*^9, 3.901805585882818*^9}, {3.9018060988062253`*^9,
3.901806154466564*^9}, {3.9018685863558426`*^9, 3.9018685935821805`*^9}, {
3.9018726680178843`*^9, 3.901872672201944*^9}, {3.9018727128856544`*^9,
3.90187272223608*^9}, 3.9018729532331743`*^9, {3.901873283069189*^9,
3.901873304986652*^9}, {3.901873438657056*^9, 3.9018734390329924`*^9}, {
3.901873537411875*^9, 3.9018735376305857`*^9}, {3.9018745566916323`*^9,
3.901874582780771*^9}, {3.9018746197045927`*^9, 3.9018746438062096`*^9},
3.9018831455399675`*^9, {3.9018849720341406`*^9, 3.901884973349409*^9}, {
3.9018850770299797`*^9, 3.901885078043713*^9}, {3.9018851707007127`*^9,
3.9018851709663734`*^9}, {3.9018852026015816`*^9,
3.9018852033580465`*^9}, {3.901885421749514*^9, 3.901885443317955*^9}, {
3.901885474943434*^9, 3.9018854752016*^9}, {3.9018856548294497`*^9,
3.901885655087496*^9}, {3.901885768713046*^9, 3.901885813145134*^9}, {
3.901885851616249*^9, 3.9018858520440474`*^9}, 3.9020293501554585`*^9, {
3.9144078774652147`*^9, 3.914407887104486*^9}, {3.914407929187993*^9,
3.9144079325031633`*^9}, {3.9144079651098022`*^9, 3.9144080342749796`*^9},
3.914408066178899*^9, {3.914416114196212*^9, 3.914416118492999*^9}, {
3.9144163661817484`*^9, 3.914416373071896*^9}, {3.9144643225048666`*^9,
3.914464324360221*^9}, {3.9144713446126747`*^9, 3.9144713458965206`*^9}, {
3.9146420221965313`*^9, 3.9146420243492785`*^9}, {3.914643890991811*^9,
3.9146438990537386`*^9}, {3.9169208658599052`*^9, 3.9169208664514503`*^9},
3.916920998907536*^9, {3.9169210447194247`*^9, 3.916921046461532*^9}, {
3.916921408239565*^9, 3.9169214091421547`*^9}, {3.91800112818097*^9,
3.918001129086413*^9}, 3.918017587925869*^9, {3.91801765581063*^9,
3.9180176561246214`*^9}, {3.9188693757307525`*^9,
3.9188693761342845`*^9}, {3.919326970467615*^9, 3.9193269707111635`*^9}, {
3.9193867307718506`*^9, 3.91938673114672*^9}, {3.919388490600342*^9,
3.9193884955485153`*^9}, {3.9194761649165573`*^9, 3.919476179574898*^9}, {
3.9194781492793837`*^9, 3.919478173116677*^9}, 3.9194792497361946`*^9, {
3.9194821247862496`*^9, 3.9194821249902315`*^9}, {3.9197339409889197`*^9,
3.919733951455513*^9}, {3.919734006000698*^9, 3.919734016056422*^9}, {
3.9197491612774363`*^9, 3.919749167242548*^9}, {3.9204290439150524`*^9,
3.920429045244275*^9}, {3.9204290802643857`*^9, 3.9204291188189807`*^9}, {
3.9204300789866114`*^9, 3.9204300793509035`*^9}, {3.92044500116483*^9,
3.9204450229764585`*^9}},
CellLabel->"In[3]:=",ExpressionUUID->"dd86c9d7-5d40-4071-a7c6-f6b96cbf3aa4"]
}, Open ]],
Cell[CellGroupData[{
Cell["Model", "Section",
CellChangeTimes->{{3.899127659957099*^9,
3.899127660547683*^9}},ExpressionUUID->"983dfbe8-d36e-4ce1-9ea4-\
7478afa60857"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Ham", "=", "HeisenbergHam"}], ";"}], " "}]], "Input",
CellChangeTimes->{{3.8991277084690857`*^9, 3.899127726209855*^9},
3.9144667118427906`*^9, {3.9194780648417635`*^9, 3.9194780772406673`*^9}, {
3.919479203592689*^9, 3.9194792055253305`*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"42c617ea-13eb-4848-8691-7ace479111b1"]
}, Open ]],
Cell[CellGroupData[{
Cell["Spectrum", "Section",
CellChangeTimes->{{3.8991276657041435`*^9, 3.89912766805923*^9}, {
3.914643923060867*^9, 3.9146439244422026`*^9}, {3.918869382508322*^9,
3.918869384193887*^9}, {3.9192930940639515`*^9, 3.9192930951556745`*^9}, {
3.9193859445356865`*^9,
3.9193859456195717`*^9}},ExpressionUUID->"4b04ccbf-02ee-46ae-b45c-\
4633800c38da"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"\[CapitalLambda]", ",", "U"}], "}"}], "=",
RowBox[{"funSpectrum", "[",
RowBox[{"N", "[", "Ham", "]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"HamNorm", "=",
RowBox[{"Max", "[",
RowBox[{"Abs", "[", "\[CapitalLambda]", "]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CapitalLambda]", "=",
RowBox[{"\[CapitalLambda]", "/", "HamNorm"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Eg", "=",
RowBox[{"\[CapitalLambda]", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], "Input",
CellChangeTimes->{{3.899127828042083*^9, 3.899127901374341*^9}, {
3.8991561666994376`*^9, 3.8991561671956725`*^9}, 3.8991563991007323`*^9, {
3.8991564313350472`*^9, 3.8991565278174896`*^9}, {3.8991566521318817`*^9,
3.8991566534876914`*^9}, 3.914407558691716*^9, {3.9191292201628056`*^9,
3.9191292417474957`*^9}, {3.9191506204985247`*^9,
3.9191506221638837`*^9}, {3.919325806720615*^9, 3.9193258083420305`*^9}, {
3.9193264731323805`*^9, 3.9193264884139214`*^9}, {3.9193272903969107`*^9,
3.9193272942256327`*^9}, {3.9193859103739944`*^9,
3.9193859183361783`*^9}, {3.919387086926618*^9, 3.9193870873250475`*^9}, {
3.919388627413493*^9, 3.9193886284418697`*^9}, {3.91938873907243*^9,
3.9193887394172993`*^9}, {3.9193888452517505`*^9, 3.919388845368333*^9},
3.9193902850276117`*^9, {3.9194717138202524`*^9, 3.9194717193396835`*^9}, {
3.9194737033262997`*^9, 3.9194737046928086`*^9}, {3.9194767144557223`*^9,
3.9194767227943387`*^9}, {3.9194769728853226`*^9,
3.9194769793176737`*^9}, {3.9194780328768654`*^9, 3.919478035170637*^9}, {
3.9194781006011763`*^9, 3.9194781008735514`*^9}, {3.9194792234984665`*^9,
3.919479228758108*^9}, {3.9194793013115563`*^9, 3.919479314811246*^9}, {
3.9194794155298634`*^9, 3.9194794179608216`*^9}, {3.91948071492234*^9,
3.919480719516922*^9}, {3.9194816934234266`*^9, 3.9194817217701607`*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"9dff703f-f73c-48bc-97cc-2193def54068"],
Cell[BoxData[
RowBox[{"-", "1.`"}]], "Output",
CellChangeTimes->{
3.8991566617295303`*^9, {3.8991567855242147`*^9, 3.899156826463601*^9},
3.8991706148747845`*^9, 3.8991754771167884`*^9, 3.8991770017762904`*^9,
3.899177240161612*^9, 3.89917732561302*^9, 3.8991774591772184`*^9,
3.8991798655819297`*^9, 3.899183545256222*^9, 3.899201656515565*^9,
3.8992719023318496`*^9, 3.899549284650896*^9, 3.8995592723027954`*^9, {
3.89978096913325*^9, 3.8997809885542994`*^9}, 3.899962454782961*^9,
3.899962982024082*^9, 3.8999632597105827`*^9, 3.8999634053950644`*^9,
3.8999669949843163`*^9, 3.899967275337964*^9, 3.901786020052724*^9,
3.901794417773555*^9, 3.901794524302462*^9, 3.901794558623313*^9, {
3.9017946073706274`*^9, 3.9017946295848484`*^9}, 3.90180350502761*^9,
3.9018035471996355`*^9, 3.9018035807892666`*^9, {3.901803613211937*^9,
3.901803659481681*^9}, 3.901803869586776*^9, 3.9018039181092877`*^9,
3.9018039646837344`*^9, 3.90180400148671*^9, 3.9018055901946564`*^9,
3.901805988223424*^9, {3.901806101691043*^9, 3.901806157165023*^9},
3.9018711049588933`*^9, 3.9018726755422835`*^9, {3.9018727158825502`*^9,
3.9018727427777853`*^9}, 3.9018729556329293`*^9, {3.901873285418005*^9,
3.901873309236523*^9}, 3.9018734418247695`*^9, 3.9018735399335213`*^9, {
3.901874559760206*^9, 3.90187458542715*^9}, {3.901874622821401*^9,
3.9018746460686927`*^9}, 3.9018836248549957`*^9, 3.9018839649996986`*^9,
3.9018849969379697`*^9, 3.901885080769133*^9, 3.9018851735059233`*^9,
3.90188520598424*^9, {3.901885401905272*^9, 3.9018854458529053`*^9},
3.901885477527384*^9, 3.901885657673396*^9, {3.9018857718180666`*^9,
3.9018858161158776`*^9}, 3.9018858543640847`*^9, 3.9020295959919095`*^9,
3.903497930046054*^9, 3.906605276382885*^9, 3.914091016615445*^9,
3.9144161438353295`*^9, 3.9144163862239695`*^9, 3.914416609424077*^9,
3.914416922420508*^9, 3.9144169949141912`*^9, 3.914417059218296*^9,
3.9144183953279305`*^9, 3.91441867455355*^9, 3.914418923096038*^9,
3.914419248190347*^9, 3.9144192806431484`*^9, 3.91442052995172*^9,
3.9144207073286753`*^9, 3.914464332613206*^9, 3.9144713494483337`*^9,
3.914498865571577*^9, 3.914500499998253*^9, 3.914583308805138*^9,
3.914594478631028*^9, 3.914643925470175*^9, 3.91577127993163*^9,
3.91577528385192*^9, 3.915973084074543*^9, 3.916920875546163*^9,
3.918869385246452*^9, 3.919129244559948*^9, 3.919150631922092*^9,
3.9192220310170393`*^9, 3.9192236004420004`*^9, 3.919293096082457*^9,
3.9193258193581977`*^9, 3.9193258585024443`*^9, 3.91932649053401*^9,
3.919327307264701*^9, 3.919339683252329*^9, {3.9193859323549547`*^9,
3.919385953870042*^9}, 3.919387090847615*^9, 3.919388633192351*^9,
3.919388743809532*^9, 3.919388849301417*^9, 3.9193902879133615`*^9,
3.9193943330753794`*^9, 3.919416104641346*^9, 3.9194700749781556`*^9,
3.9194716366162853`*^9, 3.919471724243882*^9, 3.9194766805937395`*^9,
3.9194769193697824`*^9, 3.9194780069117765`*^9, 3.9194781703570266`*^9, {
3.9194791991473083`*^9, 3.9194792203403196`*^9}, {3.9194792995410433`*^9,
3.919479317361593*^9}, 3.919480445232238*^9, 3.9194807240525703`*^9,
3.919480901184717*^9, 3.919481733722191*^9, 3.919482131274993*^9,
3.9194995934486556`*^9, 3.9196853893792505`*^9, 3.919685609197048*^9,
3.919685650025239*^9, 3.9196856836481237`*^9, 3.919685729565203*^9,
3.919685829448791*^9, 3.9197483674779367`*^9, 3.9204315749052477`*^9,
3.9204464970850987`*^9, 3.920446627355221*^9, 3.92059452260736*^9},
CellLabel->"Out[10]=",ExpressionUUID->"d7eefdba-eb07-4cbf-99e5-745f73cd9b60"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"htot", "=",
RowBox[{"27.", "/", "HamNorm"}]}]], "Input",
CellChangeTimes->{{3.899156548567054*^9, 3.8991565498043327`*^9}, {
3.89915661325156*^9, 3.899156622533657*^9}, {3.8991567134192514`*^9,
3.899156732203147*^9}, {3.8991701818596315`*^9, 3.8991701893478823`*^9}, {
3.919129224058134*^9, 3.9191292298939314`*^9}, {3.919150628240713*^9,
3.919150630536187*^9}, {3.9193258111577616`*^9, 3.919325817689246*^9}, {
3.9193265045993795`*^9, 3.919326517198873*^9}, {3.919327296748886*^9,
3.919327305488435*^9}, {3.9193859210223255`*^9, 3.9193859265075197`*^9}, {
3.9193870888563623`*^9, 3.919387089244789*^9}, {3.9193886310692496`*^9,
3.91938863172545*^9}, {3.91938874230822*^9, 3.919388742753318*^9}, {
3.919388848197796*^9, 3.919388848308442*^9}, 3.9193902868644934`*^9},
CellLabel->"In[11]:=",ExpressionUUID->"90fb9880-30cc-4367-92b0-ee42fb41da30"],
Cell[BoxData["1.5852381841406338`"], "Output",
CellChangeTimes->{
3.899156668845604*^9, 3.8991567903993635`*^9, 3.899156826521446*^9,
3.8991706148957305`*^9, 3.8991754771367364`*^9, 3.899177001797235*^9,
3.8991772401815586`*^9, 3.8991773256509185`*^9, 3.8991774592370605`*^9,
3.8991798656048675`*^9, 3.8991835452651978`*^9, 3.8992016565395103`*^9,
3.8992719023557854`*^9, 3.8995492846789737`*^9, 3.899559272359782*^9, {
3.8997809691673565`*^9, 3.8997809885887766`*^9}, 3.8999624547989187`*^9,
3.8999629820410213`*^9, 3.8999632597275524`*^9, 3.8999634054110203`*^9,
3.8999669950072546`*^9, 3.899967275368882*^9, 3.9017860201481757`*^9,
3.901794417793548*^9, 3.901794524323406*^9, 3.9017945586442556`*^9, {
3.9017946073915715`*^9, 3.9017946296057997`*^9}, 3.9018035050498447`*^9,
3.9018035472228465`*^9, 3.9018035808123164`*^9, {3.9018036132355213`*^9,
3.90180365950861*^9}, 3.901803869609759*^9, 3.9018039181430593`*^9,
3.90180396470767*^9, 3.901804001510646*^9, 3.9018055902165966`*^9,
3.9018059882443705`*^9, {3.9018061017119865`*^9, 3.9018061571888046`*^9},
3.901871104973853*^9, 3.9018726755682154`*^9, {3.9018727159074836`*^9,
3.9018727428057137`*^9}, 3.9018729556578636`*^9, {3.901873285442938*^9,
3.901873309264474*^9}, 3.901873441855195*^9, 3.9018735399594517`*^9, {
3.9018745598063536`*^9, 3.9018745854519463`*^9}, {3.901874622845338*^9,
3.901874646104596*^9}, 3.9018836248928967`*^9, 3.901883965031615*^9,
3.9018849969668927`*^9, 3.9018850808095894`*^9, 3.9018851735308666`*^9,
3.901885206007181*^9, {3.901885401931203*^9, 3.901885445881829*^9},
3.9018854775543118`*^9, 3.901885657700322*^9, {3.9018857718445835`*^9,
3.9018858161428123`*^9}, 3.9018858543930073`*^9, 3.9020295960128584`*^9,
3.903497930068992*^9, 3.906605276427706*^9, 3.914091016643791*^9,
3.914416143935568*^9, 3.9144163862578793`*^9, 3.914416609446034*^9,
3.914416922434477*^9, 3.914416994938903*^9, 3.914417059330824*^9,
3.91441839536034*^9, 3.9144186745915422`*^9, 3.9144192502702265`*^9,
3.914419280662098*^9, 3.914420529972662*^9, 3.9144207073617625`*^9,
3.914464332633521*^9, 3.9144713494712734`*^9, 3.914498865593519*^9,
3.9145005000209084`*^9, 3.9145833088304343`*^9, 3.9145944786509247`*^9,
3.9146439266921453`*^9, 3.9157712817365303`*^9, 3.915775284971676*^9,
3.915973085816668*^9, 3.9169208825995026`*^9, 3.917947152603129*^9,
3.918869386554172*^9, 3.9191292460071707`*^9, 3.919150633051561*^9,
3.9192220322297945`*^9, 3.919223601578598*^9, 3.9192930971560965`*^9,
3.919325820824425*^9, 3.9193258597985725`*^9, 3.919326518065273*^9,
3.919327311317317*^9, 3.919339685077813*^9, {3.9193859344777737`*^9,
3.9193859550757675`*^9}, 3.919387092918898*^9, 3.919388634347845*^9,
3.919388744671838*^9, 3.9193888501231313`*^9, 3.9193902891062355`*^9,
3.919394334312648*^9, 3.9194161056075*^9, 3.9194700760363293`*^9,
3.9194716366753845`*^9, 3.919479305397643*^9, 3.9194804928427854`*^9,
3.919480725428732*^9, 3.919480902940488*^9, 3.9194821325615754`*^9,
3.919499595520111*^9, 3.919685390707549*^9, 3.9196856106477985`*^9,
3.9196856543782983`*^9, 3.919685689659686*^9, 3.9196857334654655`*^9,
3.919685830548099*^9, 3.919748368975456*^9, 3.920431575803815*^9,
3.9204464971060996`*^9, 3.9204466282744555`*^9, 3.920594523058844*^9},
CellLabel->"Out[11]=",ExpressionUUID->"db946eb7-8b5b-4be6-8d72-2928214b6aaa"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Reference state", "Section",
CellChangeTimes->{{3.899127674244815*^9,
3.8991276774302664`*^9}},ExpressionUUID->"a7a80cca-5444-4b53-b605-\
f8601ec727d7"],
Cell[BoxData[{
RowBox[{
RowBox[{"\[CurlyPhi]", "=", "\[CurlyPhi]Heisenberg"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CurlyPhi]", "=",
RowBox[{"Flatten", "[",
RowBox[{
RowBox[{"Conjugate", "[", "U", "]"}], ".", "\[CurlyPhi]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"prob\[CurlyPhi]", "=",
RowBox[{
RowBox[{"Abs", "[", "\[CurlyPhi]", "]"}], "^", "2"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.899156839955513*^9, 3.899156897629757*^9}, {
3.899157349925043*^9, 3.8991574546030264`*^9}, {3.919472716165055*^9,
3.9194727206005907`*^9}, {3.919473082854891*^9, 3.9194731518916397`*^9}, {
3.91947360539088*^9, 3.919473611447384*^9}, {3.919473768653041*^9,
3.919473773197792*^9}, {3.91947381254021*^9, 3.9194738250224934`*^9}, {
3.9194739048181033`*^9, 3.91947391308595*^9}, 3.9194760621263137`*^9, {
3.919476131041907*^9, 3.919476191427169*^9}, {3.9194807423686094`*^9,
3.919480742601722*^9}, {3.9194821481605597`*^9, 3.9194821631573095`*^9}},
CellLabel->"In[12]:=",ExpressionUUID->"713b4cad-0858-405a-8780-b01c2e8bd1ae"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"pg", "=",
RowBox[{"prob\[CurlyPhi]", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ER", "=",
RowBox[{"Total", "[",
RowBox[{"prob\[CurlyPhi]", "*", "\[CapitalLambda]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"\[Epsilon]R", "=",
RowBox[{"ER", "-", "Eg"}]}]}], "Input",
CellChangeTimes->{{3.8991574637375045`*^9, 3.899157473185102*^9}, {
3.899157664508731*^9, 3.899157664741803*^9}, {3.899157720268217*^9,
3.8991577246733*^9}, {3.8991709686843133`*^9, 3.899170978856821*^9},
3.9204300751132727`*^9},
CellLabel->"In[15]:=",ExpressionUUID->"220f439b-55fe-4b9c-acc2-85384cbdff07"],
Cell[BoxData["0.682614158775422`"], "Output",
CellChangeTimes->{3.920431577255054*^9, 3.9204464982107716`*^9,
3.9204466299563904`*^9, 3.9205945245314693`*^9},
CellLabel->"Out[15]=",ExpressionUUID->"dcc3f316-07b6-46c8-9cde-58d9032d408b"],
Cell[BoxData["0.11931211992187074`"], "Output",
CellChangeTimes->{3.920431577255054*^9, 3.9204464982107716`*^9,
3.9204466299563904`*^9, 3.920594524538315*^9},
CellLabel->"Out[17]=",ExpressionUUID->"88e570a5-e6a4-494e-85ef-24e3691964bb"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Power", "Section",
CellChangeTimes->{{3.920430212709996*^9,
3.9204302133757906`*^9}},ExpressionUUID->"6feecad2-9cee-4e37-bd6a-\
174739206ad4"],
Cell[BoxData[{
RowBox[{
RowBox[{"dList", "=",
RowBox[{"{",
RowBox[{"5", ",", "7", ",", "10", ",", "15", ",", "30"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"MListP", "=",
RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Epsilon]ListP", "=",
RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"d", "=",
RowBox[{"dList", "[",
RowBox[{"[", "i", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"Id", "=",
RowBox[{"IdentityMatrix", "[", "d", "]"}]}], ";", "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"E0", "=",
RowBox[{"Eg", "+", "1."}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"Hmat", ",", "Smat"}], "}"}], "=",
RowBox[{"funMatP", "[",
RowBox[{
"\[CapitalLambda]", ",", "E0", ",", "d", ",", "prob\[CurlyPhi]"}],
"]"}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"MList", ",", "\[Epsilon]List"}], "}"}], "=",
RowBox[{"funEpsilonM", "[",
RowBox[{
"Hmat", ",", "Smat", ",", "1.", ",", "1.", ",", "Id", ",",
"\[Eta]List", ",", "Eg", ",", "d", ",", "\[Kappa]"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"AppendTo", "[",
RowBox[{"MListP", ",", "MList"}], "]"}], ";", "\[IndentingNewLine]",
RowBox[{"AppendTo", "[",
RowBox[{"\[Epsilon]ListP", ",", "\[Epsilon]List"}], "]"}], ";"}],
"\[IndentingNewLine]", ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "dList", "]"}]}], "}"}]}], "]"}],
";"}]}], "Input",
CellChangeTimes->{{3.9204303808405237`*^9, 3.920430395909894*^9},
3.920430640398192*^9, 3.9204307216169615`*^9, {3.9204309407646255`*^9,
3.920430980326091*^9}, {3.92043111562061*^9, 3.920431153456783*^9}, {
3.9204313793789883`*^9, 3.9204313876121817`*^9}, {3.9204314672269335`*^9,
3.920431478118827*^9}, {3.920431661195009*^9, 3.9204316645421877`*^9}, {
3.9204321320139976`*^9, 3.92043213549692*^9}, {3.920432256680875*^9,
3.9204322703576508`*^9}, {3.9204333088059545`*^9,
3.9204333092489057`*^9}, {3.920449251642562*^9, 3.9204492519705143`*^9},
3.920449322858699*^9, {3.9204500006787195`*^9, 3.920450040434116*^9}, {
3.920450299214354*^9, 3.920450309477562*^9}, {3.920450403065957*^9,
3.920450410480958*^9}, {3.9204506034543877`*^9, 3.9204506119536877`*^9}, {
3.920450714181065*^9, 3.9204507512994356`*^9}, {3.92045087250362*^9,
3.9204509044841137`*^9}, {3.920451018489292*^9, 3.920451022172477*^9}, {
3.920451080083089*^9, 3.9204510810195026`*^9}, {3.920451190867776*^9,
3.920451191038313*^9}},
CellLabel->"In[67]:=",ExpressionUUID->"abb663f0-4bb9-472a-9fc3-d46800a1e51b"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"PR", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"10.", "^",
RowBox[{"-", "13"}]}], ",",
RowBox[{"10.", "^", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"10.", "^", "2"}], ",",
RowBox[{"10.", "^", "28"}]}], "}"}]}], "}"}]}], ";"}], "\n",
RowBox[{"plotP", "=",
RowBox[{"ListLogLogPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]ListP", "[",
RowBox[{"[", "1", "]"}], "]"}], ",",
RowBox[{"MListP", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "}"}], "]"}], ",",
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]ListP", "[",
RowBox[{"[", "2", "]"}], "]"}], ",",
RowBox[{"MListP", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "}"}], "]"}], ",",
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]ListP", "[",
RowBox[{"[", "3", "]"}], "]"}], ",",
RowBox[{"MListP", "[",
RowBox[{"[", "3", "]"}], "]"}]}], "}"}], "]"}], ",",
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]ListP", "[",
RowBox[{"[", "4", "]"}], "]"}], ",",
RowBox[{"MListP", "[",
RowBox[{"[", "4", "]"}], "]"}]}], "}"}], "]"}], ",",
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]ListP", "[",
RowBox[{"[", "5", "]"}], "]"}], ",",
RowBox[{"MListP", "[",
RowBox[{"[", "5", "]"}], "]"}]}], "}"}], "]"}]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",", "Blue", ",", "Green", ",", "Cyan", ",", "Magenta"}],
"}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "PR"}], ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Thickness", "[", "0.004", "]"}], ",", "Red"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Thickness", "[", "0.004", "]"}], ",", "Blue"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Thickness", "[", "0.004", "]"}], ",", "Green"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Thickness", "[", "0.004", "]"}], ",", "Cyan"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Thickness", "[", "0.004", "]"}], ",", "Magenta"}], "}"}]}],
"}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.002", "]"}]}], "]"}]}], ",",
RowBox[{"FrameTicksStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.002", "]"}]}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<\!\(\*StyleBox[\"\[Epsilon]\",FontFamily->\"Times New \
Roman\",FontSize->26,FontWeight->\"Normal\"]\)\>\"", ",",
"\"\<\!\(\*StyleBox[\"M\",FontFamily->\"Times New \
Roman\",FontSize->26,FontWeight->\"Normal\"]\)\>\""}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"FontSize", "\[Rule]", "18"}], ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Arial\>\""}]}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "500"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"Placed", "[",
RowBox[{
RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"\"\<d=5\>\"", ",", "\"\<d=7\>\"", ",", "\"\<d=10\>\"", ",",
"\"\<d=15\>\"", ",", "\"\<d=30\>\""}], "}"}], ",",
RowBox[{"LegendFunction", "\[Rule]",
RowBox[{"(",
RowBox[{
RowBox[{"Framed", "[",
RowBox[{"#", ",",
RowBox[{"FrameStyle", "\[Rule]", "LightGray"}]}], "]"}], "&"}],
")"}]}], ",",
RowBox[{"LegendMarkerSize", "\[Rule]",
RowBox[{"{",
RowBox[{"16", ",", "8"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Black", ",", "Bold", ",",
RowBox[{"FontSize", "\[Rule]", "12"}], ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Arial\>\""}]}], "}"}]}],
",",
RowBox[{"LegendMargins", "\[Rule]", "0"}], ",",
RowBox[{"LegendLayout", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Column\>\"", ",", "1"}], "}"}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"0.1", ",", "0.25"}], "}"}]}], "]"}]}], ",",
RowBox[{"Epilog", "->",
RowBox[{"{",
RowBox[{"Dashed", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"10.", "^",
RowBox[{"-", "12"}]}], "]"}], ",",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"10.", "^", "24"}], "]"}], "+",
RowBox[{
RowBox[{"FindFit", "[",
RowBox[{
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"\[Epsilon]ListP", "[",
RowBox[{"[", "5", "]"}], "]"}], "]"}], ",",
RowBox[{"Log", "[",
RowBox[{"MListP", "[",
RowBox[{"[", "5", "]"}], "]"}], "]"}]}], "}"}], "]"}],
",",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], "*", "\[Epsilon]"}], "+", "b"}], ",",
RowBox[{"{", "b", "}"}], ",", "\[Epsilon]"}], "]"}], "[",
RowBox[{"[",
RowBox[{"1", ",", "2"}], "]"}], "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"10.", "^",
RowBox[{"-", "2"}]}], "]"}], ",",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"10.", "^", "4"}], "]"}], "+",
RowBox[{
RowBox[{"FindFit", "[",
RowBox[{
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"\[Epsilon]ListP", "[",
RowBox[{"[", "5", "]"}], "]"}], "]"}], ",",
RowBox[{"Log", "[",
RowBox[{"MListP", "[",
RowBox[{"[", "5", "]"}], "]"}], "]"}]}], "}"}], "]"}],
",",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], "*", "\[Epsilon]"}], "+", "b"}], ",",
RowBox[{"{", "b", "}"}], ",", "\[Epsilon]"}], "]"}], "[",
RowBox[{"[",
RowBox[{"1", ",", "2"}], "]"}], "]"}]}]}], "}"}]}], "}"}],
"]"}]}], "}"}]}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.91484555295975*^9, 3.9148457713330226`*^9},
3.9148458366749907`*^9, {3.9148460062089944`*^9, 3.9148460141822453`*^9}, {
3.9148461346411467`*^9, 3.9148461366518197`*^9}, {3.920431251638101*^9,
3.92043131267819*^9}, {3.920431345362111*^9, 3.920431367929631*^9}, {
3.9204314027753153`*^9, 3.920431560097582*^9}, {3.920431707396573*^9,
3.920431714415882*^9}, {3.920431771142164*^9, 3.920431777366806*^9}, {
3.9204318561649837`*^9, 3.920431859428048*^9}, {3.9204319183116198`*^9,
3.9204319188086014`*^9}, {3.9204321024085073`*^9, 3.920432175731056*^9}, {
3.920432219709073*^9, 3.9204322272910547`*^9}, {3.920432275623391*^9,
3.9204322831505623`*^9}, {3.920432453676178*^9, 3.920432511977437*^9}, {
3.9204325574666767`*^9, 3.9204325635448885`*^9}, {3.9204329347251225`*^9,
3.920432953652508*^9}, {3.9204332343037195`*^9, 3.9204332621713343`*^9}, {
3.9204347695490685`*^9, 3.9204347710950994`*^9}, {3.9204465279009695`*^9,
3.920446543594431*^9}, {3.920448425936077*^9, 3.920448438198824*^9}, {
3.9204512038134727`*^9, 3.9204512178955827`*^9}, {3.9205939676415787`*^9,
3.9205939688845196`*^9}, 3.920594101737136*^9, {3.9206002729963584`*^9,
3.92060028058784*^9}, {3.92060232923557*^9, 3.920602332096596*^9}},
CellLabel->"In[71]:=",ExpressionUUID->"cc14847b-37b2-4d78-bd96-0a99e3e84c81"],
Cell[BoxData[
TagBox[
GraphicsBox[{{{}, {{}, {},
{RGBColor[1, 0, 0], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwVyXlYzAkcx/GKjkHX1HRMzfyURMd0Men27Ro1NZOSSihGimzSOtLGGhRt
h1SW0iGFQqRtlkHp21ZbSAgTKrGOiaIyIRL7mz8+z/t5PR8TQWLIeiUFBYUU
cvJatCrKHNYTaCod67nsHAT5r0qG5KZKHE60/uBDeu7K/+RWatsa293Ch2W1
WRK5x+pFrOcZfEjq7G6X+0XFp/H3PD5QWT5/y30/z7FhksqH0bGnpXI3C5P3
Ux7zoIC5Vih3XaKYq1/Kg02HIlfKfSLqq/ZcAQ8GB+us5c7luTxxmMeD/Iey
MXvSe9xSy2E4EMwPK1TLnWjVEMevC4TRkT6u3NH0KZtVOwJB68fZR3ak+RSP
zxtdA6GyhOElt8fE743JCoEwcsAvw5a0jbQpLb0tAHIVYspsSDMlCoEFmQHw
oHQomUVao81T52QQ6es8ZWvSU/X7nl7UDQDG8jMOlqTfV7ScbHjCheUJttJ5
pPvzpm+8VcYFA/Uj0+aSviP0tXu8jgt7j/y5xoR0Y+KBL6/ncyF/jrDTmPT5
qPYbsvf+sFeiTdEnXcxTO6BY7w9mneJ2TdJZbv48zZ3+kDst6bQK6VSrTF2G
uz/wp7TMJ2MI3ES/3Wup5A+n/3pXM0w6kjKr0qndD0JXftj2lDR3IjCek+0H
tULugRbSLtIc+9BgP5h/aqz6DGlLSdfEWj0/4PRkh+4jTW/TxMTeJWBeWF0c
SpoiWnpwd/kSiL4r1jYi/bUij5+1fgl4v2w+172OwLd53bQiyyXQKenITyb9
RKjTf2aEA86ZypPTSd9MDD0lEnGgrEmnd5uAwCtRf276J4UDKmlDJ5vWEljF
kzjc8+DAp1+MH/WuIfCYm/63/mkcyDo/VNgYTeABq4jmoQ5f2G2hzwiLIjCZ
XpTxNccX5o0nvMtfRWAs5WmQ6jJfWH3sxYzVkQSGTdD1aQbk76VHKQwnkCNd
+cy03wcqYtits0MJZEtKTttV+MCxsUiDziACzdv6f/GI8wGRZpFgPZdAmoi5
MNDaB+aPXRut8SZQuTJ6csWYN3y3UkkNcyXwU175P3GXvUGzIq1P1Z7AV8IX
f2xP9YapiskVEWYEPkw0Dd4P3rCm6tO7e7oEtkStM8hT9gYTCRh+UCSwnndq
oOyWF/yuo2BpNsTESrfXZ2pyvWDlVVV4c5eJBVbmm6+FesHH6xayS7VM3E+P
Y3cYesFR4axwg0wm/kqp/v7omSfscV6T+TiKiYKJwZaXlZ7wb05t4xsWE0Ok
FlljGzyB2nR4+54vDPSUxIf8ZHlCyCcx1aaBgfZt5w3VZQDRVa0TN3cx0EQ0
/JwuBvANj/GOc2GgdiWrev5ugA0zey67fjZGxfzNiY5eAEUWgprUOmMcFdY6
+qgCfIQufXaCMeLA88nKwsUw57nHLltLYzzRKMhsMl0MXK203ZJBI9xT/Mqg
t8YDbgfR7BzOGmFUSmzVZ0cPqHyxPup9vBG6hw+yqc3uEOs1UBnHMkIGO76V
FeAOaoZLJ+6O0PE7dTjE/5EbZGztlXnX0bFvNOFFTLQb1DWaLRzdQseGrpFE
4VtX0L2XIbCxoePxmqQfxVtdoTHEaXHpoCH+linLvjLlAobZNyi25Ya4YsN2
owcHXWBrOI1ltdwQnTlfzn7QdoEEluyCiZohGpqlOM0ocYap1ojU+1cN8Kvi
5L9zzZ2h5rruHeVNBtgzsGu55yUnuKAqsEwyNsArjT9ernJxguJv6bk5Xfp4
rFj4687WRTB2uE8rY68+7khRUjzCXwTD58rPu7L1MSw8Lbf2sSPEtW0+7vpW
DxeyVZi3BY5gJd6y7V2JHurqZNS8GWbDja4LC4qC9HB8lOKqlMyG1KoperWC
Hj7syrrJUGRDeNV958paGopq1COcsxbCJqnK+9BVNMzLzH0TSlsI45OskFsq
NEzaoL19y4kFELNzOfjV6mIwp2BatsUCeB1fKnYI00V7M1p+Vb0DZNk6MIcn
dVBT6djsFncHOE1/8qC+XAdHBgxqn7Xbgzj9A2T76GBX43H3b8H24Dgzaa+N
lIoXi407aX12MJ7C/Usjg4qHUsoi7WPt4Kdo+odEcyo+vgjdRc9tYVl134X9
zdpYGO8zcm/cBnIWrFY9FKGNEeZ+s9QoNrCYlS9QHdJC/f8CLBYzWND1Q6NF
tFMLe0qDODvsreHS3aEddYpaWLBi2boLvlbgM0Ak3Z2liSG0cOGrFZag5bZ0
yUcNDaTejyw12mwB/PSLmx1nqmN3dtS1kH3zQbpvWV2/0izM9xP0/HF0HjCu
lqdd/jwDedNjx/GcOYTaB+u+fUNBddyoPXFjLvQfFQdLu9XwTmqCje0DMzC1
FmunXVXFnEVJAbHSOaBecFrTukgFebJtG0onTaGgIbl/wRZlVKvdmf5Q0xSe
pJT2W7hPx474XRUzzUwgrTBotfFPJTxoLmzycpoNYbtuj3f8rYiHWlWvygqZ
IGrMCqlbq4Aabpqytc3G8D/2xGz1
"]]},
{RGBColor[0, 0, 1], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwVyXk81Ikfx3HJMRG5ErlmxpiZL6sYt8F8mBmGmSjstCtXSjqVlKOtpBXW
j99mS1FU0+ZXRIQcP7/yqSk6JpKhFMKGEkpbObp2fn+8H6/H8/GmxOwMjlVW
UlJKVez/VdIRF+0RENgj/+NV2fYgoPQzD25TuFXaVdVgHwSd0zqzUQrX1xgk
3/kUCHJJQdoahUslP3p1NQfCb9eGvDgKFxw9oTp0SPGzolhMhY+kPZFN8QOB
VHWRo6nw3nij4180AmEiNPfFqB+BsRE/r9N4tArmSkqXNCkcIjpFNSpYBasN
eiPTFOayn7+2ClsFeudIdc4KO1ibXnWwWAXGqZv3PPcl0NI4IsX7pQjS9402
blZYn3SGE1QmgmoiL+Ipn0DlmQG1iHgRuPngR6rC70cs2rc6iOCcn5kWh0fg
sDy6IGVWCKkhmZ1kLoGPpZLwzOtC0OzMrGzyJvBWzbDl8cNCmJ6IXzHDIfCq
xPKNxE8IN1VU/rrlSaDk6MaaqsVCSDr/b80FbALz00pTr3cGgLleW8zvLgSm
x4/CgxMBEJsx5chzIDAhgkHqXRcAV4ZmXCZtCYwSbe4YJQdA5Jg4JJBBYBC7
7MSHEX9Yl+CcQrYgkGM9HqF82R8Y1cGRuksJXGlsY6Wzyx9KNd6lSUkEWpC2
T5g5+YMt1aCvY46J2jMVtTbzAsg551Z+d4yJ30Ym97m1CODR7Ao3r8dMnJKv
8PHLEEAvhbymrZGJA9Kdi370F4C6e2vhotNMbK+pfhSjLQB7ku7/7qQw8bpk
+uSuLj/43JHlObyGiZVHWVEHC/3g0FOP63vpTCxJS6TnRvjBw0wzzsNPDMyN
r5ssovrBU3bcy+1SBu6P+Fh3ccwXpJXjQxp5DNwmct5/rcIX+s4m2v0aysB1
7GSuNMEXLgQeutG6nIFC60aNTmdfqHLQPtE6SEd347nOgc98iK7PORt5kY42
JPeiCeTDQU9Zh/dOOi6f2Rc9f4QPVLMbz8Zd6agx2swgCflQ3dJLPqZCx3n5
l6mlOnwI82N62j+2wtdSz3rLbh7IMZGfJrHCZzUHD9if4sFiSkef+m4rvCdp
4XGieFDcWyl05Vph01GlxatoPNhaLV2318AKL6V5d4W95sJtlTNiuxEaFsYf
PrX5Chf+sycqfa6OhtkR0vVJiVyoH6gvzvuVhskiFSLDlQv58xJR32oaxrH5
7/K/+kCo7SJXNTMarrXObDh7ywdU+yveBb+yRD/jtoOVWT6wiLbSl1xriS4k
km+zyAe4f2eotR+wRPqMQOuerg8wQuK0ywWWaDj6m7ynxxuuD80cG9S3RLXu
+6dfnvaGwIri1sQXVPwo1dzwPtobIt7u/snjMhVHakTWSnRveH5tZcP7JCp2
S/Kmtd4AmPnoL+D4UPHO0fZGk2qACdnTA7LFVKxLW3KI2AvQpewrDe+h4IX4
1X4u7gAhY6q3e85QkNlMNcv5xoHSXPWOwE0UVCu6cLk0mwOFSTkDqrYUHE2i
u9/U48B5eQYv+m8ytoZeuttX7AXm4Q0J3U1kLGVZr52lewHFYHbi+SEyHtGp
GNG/6gkBrWJht4CMG6ds96xke8K4SvCHr7pk5MmqlIV3PCD/fU5iW6MF0srt
8zcFecDbkvV/3QuyQOXsWovDvWwwkfPtd70yx+FYpyslG9jg3+Ym+5Bujje5
DR5Nk+5woF13MsPEHCUUtwfyZHc4ErZldFOdGaZ//+/P7xa4g5uerc5ykRmu
7/d4pZnrBu21dN2tw6bo1XwjiWHoBu82jFQlJJuieRGocs+5gs13u7pcTVP8
lnTrWKS1K5RVqpp4nDXBgVAedV+dC0yqPNFa6GCCN1it1QVeLsB+5t/Ba1uO
xToCztW7zqCdnXnMJnw57p+691AW7AwTO7d8LZk2xnCZMPxVnxP0HOsV8bOM
kV3+cHxhnBMs+INOO29qjCbZQakW046gvoPkZn3VCOdiO9XZvzjC46HHtDie
EfZyQ06IVR0h9PCFYO2eZdhE6abt/t0BWvQZnZqblmHRd3FtnrED2AScsTvw
wRCT+p96l/3JghfWvbKSdEMUN4c9um3LgspdRr1lWoboXNQXOdhgD6c0Csyx
cCkaJkdOfva2h/NqO7ruU5fip9DBX5bJ7MDpmkQ36bIBylkxGg5iO2Acz7rv
zDLAOMpd+xJcCYR/+uXoen1k9D8IlMtXwGCrzhG+iz6OFXZs03xtC74LtmwX
1+nhxdCubJ+vP8DgxqAsL1s9jNF5Upqq+wPosp2Z0xJdpMqe3aq2soH8rSsW
XtLTxeGsgRdjbtZg7iie70zTwfPc4S/mgQTcTwgfmOhaguu/jxiLY5gQO1it
zfhTG82aXzvnJTFg2pj+7esOLexPmgy5nUOHVPcbKRLHxVjMmt71+YwVKO0f
z2r8pIHhUx/yWLU0CFM5uWlv7SI0LZ8t39JmCYw5/3/d2ULCJ7Ff2s49p0KV
5vhovpE6nqQojTx5SwGnlmGBUosqru1fqLxEhQKufOrOS+EquKxI3cLXiAxv
KhzO1k0rY2WZYcr8T+bwDzLlciI=
"]]},
{RGBColor[0, 1, 0], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwVxXk8FIgeAHBHckbDJLOJMW4GcxUifo4ZczBqc6b2kWqQI4nGKkekTPU6
lPaN6FCSkfW068jg59OhcrXFc9RiKZJXxMYS2vf++H6+JnsSvt+npKCgkPo/
/1+nve+U0IiJ8R3lUupNf1B0Ln2/YS0Tf5BPRmwR+cPVx60nehSYKJRRrblU
fygi66eofmagqzRuOvCzEKr+U+tYMMxAal5lbWSNEKg9p8XyLgYaiqfSE9OE
sOe+LvNCEwO1RDROBgghuIKcufoeA5cCE9ecVRHCmQxzuX4hAye9q7ulz/1A
M6tgt+QUA18zZwvLzvmBpHLxMCOZgW0UVmRNgB9sCyPYj4UzsIGQbPOI5Af5
cZoxUQIGyhRqPv826AtaRLt9JSwGSqfm6oZKfGGCJ1fLNGSgZNAx82OULzyb
UPbWUWbgjx1in692vuCs8fFN4ns6xsjrtdVnBbC41JA10E7HnbLFHv06AfxR
cag7p4qOXKlLkdkxAegOzudU5dPRKe/oXoanADSd9CTnU+hoJW60BVUB/Dh8
l+MTSkcD0cqMXzsfRPHk4SEXOqoFuT8Iu8AHYcwqvr8RHee9M7Oig/gw6tlf
IFag4zizhXtkAx+m0zhs1ggNeylKa08M82CMdONO6EMathK8ei/e5sFBLZMT
z0poWKuQU3w9hgfdgtJzh7NpWDr1aF+lAw+KnJXCwvfQsGBQxU7+Jxeq3eyO
lgINczs4fz6r54KQFBd50IiGKfKTDb3pXGAZ21QNzjvgftnT4++8uMAXFkeV
VjtggFSdP6vGhXfDKYVZcQ7onccnKHb6wJa5tvRLVg7IEp/u0873gSezuRE9
o/ZoJmq/ZhjiA/X63/ha1+yRGLRGZLPRBxhjYXdeh9qjMlto7zTCgSSxykSX
nj3OMs99Yd/hQJt+uSSp3Q5HKS/kO2I5UN92ZW9kth2+JBByIugcuJ8prv6H
kx0+VPhekDDHhkfsFY3gSSpWT13UPdbAhlWNTh3RV6l4c/BVvySTDXnGJOaY
gIoXO4g3fmKzIZGU4+62aIuZ8sCoUg02kAM5UQt3bPGQrMDhly5vIL9i698K
tMVwae9cyyVv6PXS+NykbIvb8gyaukK9oUzJfuHnahsEceiJ3428QaW0dnvt
HhukiaS+k6NeUOdse35CzwbJQa/1Fsq8QLpjqZv2xBp12IavV8d7wYPBidmA
VGv8xtx9k8j0AkJxWZq6nTVOUYqjKX95wvyRuZmVYSscJAzRaI2eUHg5+e7s
JSvsVCD/tfW4J2gaRUUj1wqbpsKbBT6eUO1owvthyRIrB2/khmp5QkvRlay3
P1ticceIn+g3DygPuKCTEWmJZ+Wm65ILPCDbszojfL0lHpPtfXM8zAOMTIME
1W0WGCu9XXKe7AEGbfeTT2Za4K68sZjidwDp3JZr3Zss0FdsyagoBxiqI/0r
YdIcXUVRC/UJAKLlDQ36N8yRGnQXW1kAV1xkyelB5rhZ0q0jm3WHUzOObyM0
zVE/Kqj4yTF36AzoybjYbIZz7D7qiKo7JBnkCJSTzLDHdGfD8gU34BjfU+8w
N8NfFd/wSIZu8PJBT51NnynmD+3uY5Vuheam2x4JElNMahzav422FdKsVknm
XE1xR2HElwMPXCGEkv6WOE1BRupo9klvVzjn/pSgdouCusH7dEs6XcAldu75
f0MoOM0av94U4gJmhk6qDdoUfKEb7TAwsgXiW03f8R6bYNX0h8YvsVsgpv/m
oZ1HTfB8Z6wvYd4Zrh8wHSxlmmB8xacBapYz3LpaGzPzgYxCycForqYz+C8X
u+nfJKN91Mx85GUn2N9G/KIaSkZtzuHcDGMn4HuqnezTIeMn0zli4V1H0JSM
sEPOGmOborikhukIXpcHqnd+NULZ0AL9ZeNm6B838F+JNsLTjWn40WczqPYv
u0f2b8QDhctC9Zeb4Gz3yWgxbyMKUjN+N9u1CQh1ErOVekO0DlaMhTEWuKqc
nblsY4jqm7IXww6yQOZZ5Twg3YDvdVXyjiwyoX1pU0WKxgZ8Op27Pj+HCVVU
r17n1O+wtFOttFKbCTGTece/GydhboWE9fwnBiQ+Wwl2CCDhfonWw3cUBrT6
6mUUogFyov65XfEeHc5Y29mlUA3QgrN22NCRDpZuCb/+cmU9KptdjHdqocGH
u4mzG5XW46gicXmHgAankt+zBAf0MbfZdv1QuQMcJqe11rxch5w0B5Z+sz28
cdNx63Zch6sdmdv9XtlB1Ri1zFZKxJaZzfE541SI46m6HVzQw6zKLacbvtrC
/Zmy02cC9dAjxq1sRscWAoQ5HjcqdVHRwvOxtZkN3N/FF82v0sWWP9gj4U7W
MDEeJ58IIeDRIt63K75WEJE/uvS8fC26hvoZdoVbgodOXEnxFx38StzuvDrZ
AvpI9V1LF7Sx4UVA0NY8c8DsDotImzWYdiYk6XCRGUAnt9G1SRMdubvOy/5t
CvwTFcE9vho4pxx+b+QxBY7zaPslPWpY0xz5nDRgAthB1FwIVsWUNNH4tk9k
SD23YzW5WwU3Ox5YdUqJDH8Dh0Nzrw==
"]]},
{RGBColor[0, 1, 1], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwVxXk4FAgfAGDU6HDkiJLcmXGNuWeM88cYzJhxbZ9C9GSFHMXs0mJHhWT7
mGR02iLR5RjHFpXyk0qbaFPTijasatNuUSZSyn7fH+/zWsXuCNuqoaamlvU/
/98gUdH9fSYHk7p2Vnz/LBgmVGovvoZxMLKpPTbvdDAMNRfk/EbhoLByzr40
MRjkcv28fm0OcmWu706Qg2G9Y+fd+Qk22ktz2uveBwGl5s6Z2B42mqR07Lrc
FgRmFzJa/qxh47KoL349PwbBCZ3i0Pg8Ns4JPHWV3kFgPNLIG93Mxr9cdin/
1AyC/XlV98CDjb+T8OepXjEoV09qHV/Dxh5j9bivpWKIrkXXRR9Z2EbwcdQO
F0Oosru4VsnCs6q89yamYlh4JDOsa2Xh4fHuy6RREcjfaXRwy1hYOLB4D6tW
BMNKv9Lt6SzM7OIH8JJEwELH/4SFsjC+qXBFKEUERrfmy57QWBhe2fM4RhUI
nRL63ucGLOTLlp5MuRwI3QLmAk/FRJZUsDU7NxB0UqusbyiZaJuy36mIFwgz
5H2t9m1MNIrqnT60NBBici22iY4ykSDUvnq6TwgbJ5TpS7OYOO0izmsuEwIx
cdHVgAgmjpNkgs4NQkh0MkpV5zLxofF9vb61Qvj1s6LDcTUTuwl6g0NjAkgl
uPzcOcPAVlVI5aszAmgMDzNvesTA6vGD8TPJArDZqu/4upmBZQMD5MU0ARAy
tDLDZQzM6zL8oD8TALNDsybPtjFQ0rS+w+JqAKz4oHJP82VgbOWhfPLuAEjs
JKQvMWdgqOyx0I0fAAe1bt+rm6Gjt3SVgWB5AGR22lyS9NORlrLxSfh9fzhN
yRXn1NLRKupYVVy5P2x563HlVQ4d9YVDCZIIf9CaPMobDqXjgospZbe5P6jn
dLsnkeg4Sdo0UzLuB0W3ih5XztNwxPjEtYpzftAyc7Fr5wMa9hOeFZxP9YMn
kSaUsVoadqrMRW10P4hWkKq7s2jYOL7Z8NYsH/zBNZQgpuHJgaqhgQ4+2J2o
6zpoQUNZ19ip0T18kGRUzca8o6K0yXrbWz8+qEVsCkq7QcXtld9S57X4cLS5
v/1xGRWjZTWzyx74QuUpY3ljLBXF0hfXVx32hcyakTumdCp6pBALbaN8gVSQ
rcNXp6JTVIKYYekLBXFnX52oouBa4bmV3i94IOuNpCo8KajFnRgOusCDA62F
sy+fOuNnksPpTTt4EEcD4cYcZ/zbODkpickDpSixRH2NMw4T6mk/zPmA36Dd
7QftZOxV/fNx73UfGMh2vtu0gYxXxskoz/cBiasovmjGCS8MbN93KsAHHitH
PEWHnPB4lyJIoeMD5RcN078ynPCnpimjawPeoHNW86ViwBGzKml/3D3iDWvM
SPE/pjviNpmkZnCTNxS2rs/N13PECGlr8ksrb2ghkr+OKBxQkKKiq14CGOrF
WFcFO6BLFOuTej2A3/2TSThpj3bCzK4V6QD9b1/LHUrtcRW3rciMDcAfv+Z9
mWqPuiFTleEzXjAya17n9cAO35IlzpLdXnCkODhXnm6HfVqqjpLlXuCyQXPv
YX07bJjICDxf7gmKgoYLHs0kLO6ZfXLT3BOWHv14Tx5CwpTarMTRcx6Qdbx/
tG2SiKL8zzOf6R7Q0PFo6e8yIjpske5ddc0deIR9X2ycibjca8GQ4e8OgU/V
Svr6bHFi7Z7qoAduMCnLXDmTaou/ftKgJUW5gfbIweYGXVs8P1jQufeFK1wl
KHOmFOvwp0uaQad2uMLORVcCz4euw/jyoqcdc1wIODMqbZ+2QT/J8uTBfC58
GElT/3LIBokhxXPTOlyo+IbrG+1ig5rOukUrjroAOvzy374ha3ypVWrsaO0C
eboPtcOk1nhzQr/Wr54D1xtLNsxbWGNNj5wRy+aAfULYwvMbVlhQa3RDimyg
zJ1Otom3wrj8IyHHhGw4h/r028us0HeLycgvj1iQrX7Zub/BEq28KlJ/i2EB
g8m7Qw6zRHUzs/m/XzHB0vWQ6bE3Fjj26eT+Jd8xYdftax9MORbYNWhpYvOF
AQ1ZRLeW3eZ48lL1Wc99DKhgX9T1uGuGueXr2JH6DJgSJWleNDTDGMmZmxkV
dMh2LauwjV6LniF23xy0pYNen7vBqTOmaO58YaxeQQMdtahO6tQanNdySrvD
pUHLsPa929w1+HSi4et4NxUmdYbd2Pkm2NFDKVkQU0FG5a9j3luNnMBvOewm
CuiZsBxiV67GWc2E9ak3nUF/Tmvz5qhV2HIjKb1mkAwBHL19Q1XGKMndLhv+
xwl4hYvTq54bId1VUmeg7gQekfXx1UQjfP8h447AyBEatzd7TsevxJbmrBe7
7R1g8eLv+B21hpiaKtVo97CH9eMfgTxugGT7PRaToXbAaOeMJVsY4JvnBe7E
eBLUv4+YKIzUx/qqoojobCLY8w5Ep5XrYcqm4sxymS2IH2psVju+Au1Wl8p7
q9fBq0Wf+V+W6OJfD+VNGm02EOK0jZUg0cazB470cXutYT4+rufN4HJMCKx4
nTZiBROZIedz3JYhaUnlknPTlvAvHfx9VQ==
"]]},
{RGBColor[1, 0, 1], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwVxXk8FIgeAHDH0CVyTLmPoXEzY05m6OcYM4NxrWw6qISSkog8T45IpGSl
HI0mR6mR41EU6rfo1OZJjnRsKWRLz0bYRd57f3w/X6Pd0f5hcjIyMon/8/+n
moQ3rPMcMfa6UwZH3xd6Drz+bd8uR/S8acJrJPhC680DhKfmjpgVlOMX98wH
XMqUj9RPczFe0K2ZXuADV7I7w762cjGcpfQub4sPSFV6w62zuBhIFl0V6/lA
nLR2RsOXizzimYPSEW/Y0WRvQNfmIoPQw7h91RsGqydffBnhoMm0ytKDKG+Y
0DzDmqrhoMaIb9cLqjewloU1JfEcJPTmnxqZFcGqEG2VbODgzL3n/lOtIuid
6VQ+t5qDH2vVtX+kimBmTcmngBcO2CcOeL/GXQQ2PYtBK8scsDO3sFprjQjy
xbQ/6iMcsDFpINr0314wzn7jFUh1wIrIDSxGoRc8r2RKVRbssSBoyw+XrV5A
jwtY/N5lj+mC4vu+Bl6AaeyTf52xx8Os4dzgj55wgu+VZxpkj7vIOgFR1zxh
UvJTTq6xPfoRt+v846AnEGcKVjG+stGZIB7JonkCxS2kUfM2GynTb64VznsA
X0QMJWWw0XBEP6ai3QOqHmVVbPdh47reEHZDugeQxKkhLdpslEHJ8l2+B3RW
md+njbFwqvb9g6dKHrDUTZjvaGDh72LSmeFeITStK6kITmZhT27o5k/nhdCh
ushVFLLwXlKl7uw2ISwoJbRe02BhXeToB3kjITiN225zfMfES0FkqeqYALIf
5xg3S5l4RhBx2EAqgMHAsvMKCUxMZlXbWx8SQMj50Kt6Lkw8QJ6Q4TAEYEUt
MZ5XYuIOosUjwd988E/ymDg7yEARYX9e4D0+5F+27Z+4zEDutDRwTwYfojtu
P1CMYqDVyBe9w0I+1JkI7SYZDNTttR5NUeZDWu+RyPJlOq7BgzWn+9zh7VSb
pfljOi7W1sWWFrmD/ie59rRf6PhZPOVwbYc7MJ16NK5vo+OrXKpcM8kdFjO3
OJeZ0LE76fDjrnEe/Dzr6bF1koZ3IhvPPq/hgUKO/7dXN2koDZr5+V0MD1w/
x242PkbDYgHD4CuTBzHv7/bT3GmYzYofW1hwg6Fxh3h1ZRomkptvrPrVDa7M
dVx50m+H+4jzcRtOuIG8OOb1brEdBhHsuRs93WBxPCpvdI8dCqYT5Wnr3CBm
xYe126zskD1y5wn0u0J9z+qux9NUNOtdyPcucQVXnRQpo5WKG5AbtD3EFey0
KEck6VRcUZdsGGniCgnMcPnVHlScE98dT5hwAYVEml+MKhXHc5drM2td4FCz
TXz/EAUHkyC+INYFYsvWH2NKKPggMs3xMtsFAj9K/y6MoOCtoA5C3ZIzNHdk
KczZULBKIP+0rcMZ2vcoS1q/2GIhy63gSZYzZCy+Lhcn2WImOXPrkJczfD9l
WFK62haPEB8Yjak6g954c8/tYhsMI6yYmB4AKBac0Jw3s8GAaX697EWAtPOz
xX4t1ug2cjJBZRdAn0FgXTvfGum9j530yADRuZ591EEr5KcSlQIHNsGx+jDt
ynArNA2+UBKzcxOQIvZWrJ21REWulvnpP5xAVkDdGZVpiaNapc3VcU7wzdH1
WaeGJd6f03Xv+uEIC2p4TLfSAiv7y178ftIRrrfkFKbTLDCj0TB0Qc0RVvOI
RfKd5hiaX/7nejEX7HMSZWr8zdE12iTVzpQLIbVqqpkjZmgsuqLs3cCBh+eC
QwoOm6G8pZl4H4cDrvvUYwbkzPDdyuuWmfcdgNDckS8sMEUcs7wj8XEA13Cr
llFjU5R03RC0vbSH/T3VspVNZEwttx0cDLWHkE4l9VQeGXemNoRNT7KBGKxW
nziwER2DaTPKR9nQ5rFXozBiI+pxb6ZbyLFhZd7l+ZfzJrikxVJ1z2XB5C9D
eX45JvhmruXSrvUs8E27oEHQNcH2fgebZAkTKMUJF2dvGGNpY1tbkQUT+hpT
hs3BGJPynTybmhjwL+tYVslzEm6Lxpc9TgzQKTXb5BxGQo7IZe/nR3SQGhp9
3TBvhJqWXbOKP9HB/264htYpI5xf6Z5JekMD72SzKRd9Ixwae6juFEEDJ3Jh
yIUGQ2zpEpYH/WkHn1MU07R5hlhU3k05kmQH8l9ObpI0GGB8qujeWQU7GI6u
OBDzUh8Dg3tENXlU+PTtmUKZrD4yuH6vH2pR4ZbKgqyyhR4StfsiP1RQYO5o
1WWxvy5+nwv464c1BS79U/EWKUkHr0hvqDAO2cJxCUsurkIbwyMarKIybOCV
r0XyoW4tJBvfFFYUWUPjRByfMK2Jo29bwodrrEC9uHrCXFsTq0rajqv+agnL
B0oujsMG3BWIEkG/BRQ9mjwujFiPhmpd7SkT5pA173d262kivvvt4fCtJTOw
ncheq9+ogZLs7rlJVTP4tvl1zakhddzJ69HYSDYFixw3et6SGurI9lG3O5Ah
/pLt8hqSGr5qG/Au8N4I7889PPSBp4qlR4f3P9ltAn2a7KbFvetwK/3tSdkE
Y/hcqf2fC+tVUHvqfRX7FAn+C4zAfXY=
"]]}}, {{}, {}}}, InsetBox[
TemplateBox[{"\"d=5\"", "\"d=7\"", "\"d=10\"", "\"d=15\"", "\"d=30\""},
"LineLegend",
DisplayFunction->(FormBox[
FrameBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[1, 0, 0]], {
LineBox[{{0, 8}, {16, 8}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[1, 0, 0]], {}}}, AspectRatio -> Full,
ImageSize -> {16, 8}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.05499999999999999] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0, 0, 1]], {
LineBox[{{0, 8}, {16, 8}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0, 0, 1]], {}}}, AspectRatio -> Full,
ImageSize -> {16, 8}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.05499999999999999] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0, 1, 0]], {
LineBox[{{0, 8}, {16, 8}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0, 1, 0]], {}}}, AspectRatio -> Full,
ImageSize -> {16, 8}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.05499999999999999] ->
Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0, 1, 1]], {
LineBox[{{0, 8}, {16, 8}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0, 1, 1]], {}}}, AspectRatio -> Full,
ImageSize -> {16, 8}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.05499999999999999] ->
Baseline)], #4}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[1, 0, 1]], {
LineBox[{{0, 8}, {16, 8}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[1, 0, 1]], {}}}, AspectRatio -> Full,
ImageSize -> {16, 8}, PlotRangePadding -> None,
ImagePadding -> Automatic,